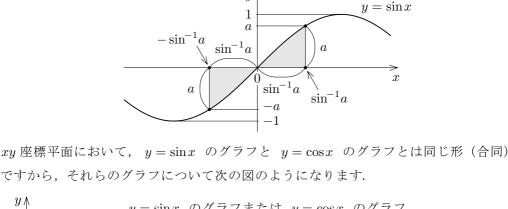
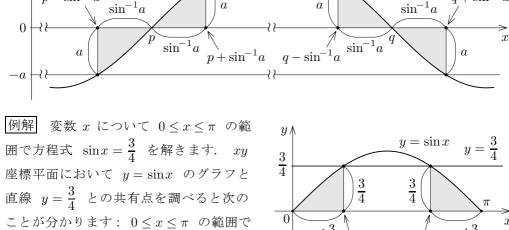
第10章の補遺4 三角関数が現れる方程式・不等式 xy 座標平面において $y=\sin x$ のグラフを考えます. 実数 a について $0\leq a\leq 1$

とします. $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ である実数 x について, 点 (x,a) が $y = \sin x$ のグラフに属すとき, $a=\sin x$ なので, $\sin^{-1}a=\sin^{-1}(\sin x)=x$, つまり $x = \sin^{-1} a$. 点 (x, -a) が $y = \sin x$ のグラフに属すとき, $-a = \sin x$ なので, $\sin^{-1}(-a) = \sin^{-1}(\sin x) = -\sin^{-1}(\sin x) = x$, $\sharp \circ \mathsf{T} \quad x = \sin^{-1}(-a) = -\sin^{-1}a$. れらのことから次の図のようになります.



 $y = \sin x$ のグラフまたは $y = \cos x$ のグラフ



 $\sin^{-1}\frac{3}{4} \quad \pi - \sin^{-1}\frac{3}{4}$

終

終

終

との上下関係を調べると次

方程式 $\sin x = \frac{3}{4}$ を解くと, $x = \sin^{-1} \frac{3}{4}$

は方程式 $\sin x = \frac{3}{4}$ の解です. また, 実数 X について,

または $x = \pi - \sin^{-1}\frac{3}{4}$.

さい.

 $2\pi - \sin^{-1}\frac{3}{4}$.

なさい.

なさい.

 $x = \pi - \sin^{-1}\frac{3}{4} \quad .$

 $\pi - \sin^{-1}\frac{3}{4} \le x \le 2\pi$.

なさい.

ここで $X = \sin^{-1}\frac{3}{4}$ とおくと, $\sin\left(\pi - \sin^{-1}\frac{3}{4}\right) = \sin\left(\sin^{-1}\frac{3}{4}\right) = \frac{3}{4}$. 従って $\pi - \sin^{-1} \frac{3}{4}$ も方程式 $\sin x = \frac{3}{4}$ の解です. 終

問題 10.補遺4.1 変数 x について $0 \le x \le 2\pi$ の範囲で方程式 $\sin x = \frac{3}{5}$ を解きな

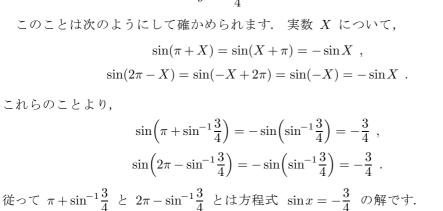
 $\sin(\pi - X) = \sin(-X + \pi) = -\sin(-X) = -(-\sin X) = \sin X ;$

このことは次のようにして確かめられます. $\sin\left(\sin^{-1}\frac{3}{4}\right) = \frac{3}{4}$ ですから, $\sin^{-1}\frac{3}{4}$

例解 変数
$$x$$
 について $0 \le x \le 2\pi$ の範囲で方程式 $\sin x = -\frac{3}{4}$ を解きます. xy 座標平面において $y = \sin x$ のグラフと 直線 $y = -\frac{3}{4}$ との共有点を調べると次のこ

 $y = \sin x$ $\pi + \sin^{-1}\frac{3}{4} 2\pi - \sin^{-1}\frac{3}{4}$ $y \wedge$ $\sin^{-1}\frac{3}{4}$ \int $\sin^{-1}\frac{3}{4}$

とが分かります: $0 \le x \le 2\pi$ の範囲で,方程式 $\sin x = -\frac{3}{4}$ の解は $\pi + \sin^{-1}\frac{3}{4}$ と



が分かります: $0 \le x \le 2\pi$ の範囲で方程式 $\cos x = \frac{5}{7}$ を解くと, $x = \frac{\pi}{2} - \sin^{-1}\frac{5}{7}$ または $x = \frac{3\pi}{2} + \sin^{-1}\frac{5}{7}$.

問題 10.補遺4.2 変数 x について $0 \le x \le 2\pi$ の範囲で方程式 $\sin x = -\frac{7}{9}$ を解き

例解 変数 x について $0 \le x \le 2\pi$ の範囲で方程式 $\cos x = \frac{5}{7}$ を解きます. xy 座

標平面において $y = \cos x$ のグラフと 直線 $y = -\frac{5}{7}$ との共有点を調べると次のこと

 $\cos\!\left(\frac{\pi}{2} - X\right) = \cos\!\left(-X + \frac{\pi}{2}\right) = -\sin(-X) = \sin X \ ,$ $\cos\left(\frac{3\pi}{2} + X\right) = \cos\left(X + \frac{\pi}{2} + \pi\right) = -\cos\left(X + \frac{\pi}{2}\right) = -(-\sin X) = \sin X$; ここで $X = \sin^{-1}\frac{5}{7}$ とおくと, $\sin\left(\sin^{-1}\frac{5}{7}\right) = \frac{5}{7}$ なので, $\cos\left(\frac{\pi}{2} - \sin^{-1}\frac{5}{7}\right) = \sin\left(\sin^{-1}\frac{5}{7}\right) = \frac{5}{7}$ $\cos\left(\frac{3\pi}{2} + \sin^{-1}\frac{5}{7}\right) = \sin\left(\sin^{-1}\frac{5}{7}\right) = \frac{5}{7} .$ 従って $\frac{\pi}{2} - \sin^{-1}\frac{5}{7}$ と $\frac{3\pi}{2} + \sin^{-1}\frac{5}{7}$ とは方程式 $\cos x = \frac{5}{7}$ の解です.

問題 10.補遺4.3 変数 x について $0 \le x \le 2\pi$ の範囲で方程式 $\cos x = \frac{5}{8}$ を解き

例解 変数 x について $0 \le x \le 2\pi$ の範囲で不等式 $\sin x > \frac{3}{4}$ を解きま

す. $0 \le x \le 2\pi$ の範囲で方程式 $\sin x = \frac{3}{4}$ を解くと, $x = \sin^{-1}\frac{3}{4}$ または

このことは次のようにして確かめられます. 実数 X について,

 $\frac{\pi}{2} - \sin^{-1}\frac{5}{5}$

xy 座標平面において $y = \sin x$ のグラフと 直線 $y = \frac{3}{4}$

のことが分かります: $0 \le x \le 2\pi$ の範囲で,

問題 10.補遺4.4 変数 x について $0 \le x \le 2\pi$ の範囲で不等式 $\sin x \ge \frac{5}{6}$ を解きな 問題 10.補遺4.5 変数 x について $0 \le x \le 2\pi$ の範囲で不等式 $\sin x < -\frac{4}{7}$ を解き

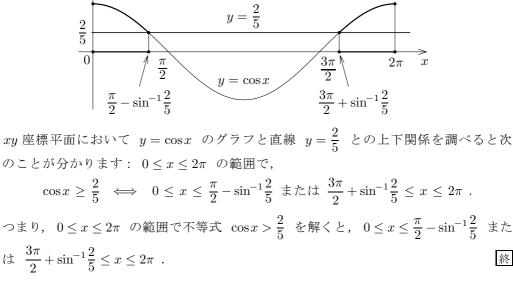
例解 変数 x について $0 \le x \le 2\pi$ の範囲で不等式 $\cos x \ge \frac{2}{5}$ を解きま

す. $0 \le x \le 2\pi$ の範囲で方程式 $\cos x = \frac{2}{5}$ を解くと, $x = \frac{\pi}{2} - \sin^{-1}\frac{2}{5}$ または

 $\sin x > \frac{3}{4} \iff \sin^{-1} \frac{3}{4} < x < \pi - \sin^{-1} \frac{3}{4}$.

つまり, $0 \leq x \leq 2\pi$ の範囲で不等式 $\sin x \leq \frac{3}{4}$ を解くと, $0 \leq x \leq \sin^{-1}\frac{3}{4}$ または

 $x = \frac{3\pi}{2} + \sin^{-1}\frac{2}{5}$.



問題 10.補遺4.6 変数 x について $0 \le x \le 2\pi$ の範囲で不等式 $\cos x > \frac{3}{8}$ を解き なさい.