2.8 三角関数の微分係数

関数 f の定義域の実数 a について, $h \to 0$ のとき $\frac{f(a+h)-f(a)}{h}$ が 収束するならば,関数 f は a において微分可能であるといい,極限値 $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ を a における f の微分係数という.

関数 f の定義域の実数 a について, h o 0 のとき $\frac{f(a+h)-f(a)}{r}$ が 収束するならば、関数 f は a において微分可能であるといい、極限値 $\lim_{t \to a} \frac{f(a+h) - f(a)}{t}$ を a における f の微分係数という.

実数 a における正弦関数 $\sin x$ の微分係数は $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h}$ で

ある.

 $\lim_{h\to 0} \frac{\cos(a+h) - \cos a}{h} \quad \mathfrak{C}$ 実数 a における余弦関数 $\cos x$ の微分係数は

ある.

関数 f の定義域の実数 a について, h o 0 のとき $\frac{f(a+h)-f(a)}{\iota}$ が 収束するならば、関数 f は a において微分可能であるといい、極限値 $\lim_{h \to \infty} \frac{f(a+h) - f(a)}{h}$ を a における f の微分係数という.

実数 a における正弦関数 $\sin x$ の微分係数は $\lim_{h\to 0} \frac{\sin(a+h)-\sin a}{h}$ で

ある.

 $\lim_{h\to 0} \frac{\cos(a+h) - \cos a}{h} \quad \mathfrak{C}$ 実数 a における余弦関数 $\cos x$ の微分係数は

ある. これらを考えるために正弦関数・余弦関数の公式を復習する。

実数
$$a,b$$
 について,

$$a = \frac{a+b}{2} + \frac{a-b}{2} \ , \qquad b = \frac{a+b}{2} - \frac{a-b}{2} \ .$$

正弦関数の加法定理より、
$$\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$\sin b = \sin \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2} .$$

$$\sin a = \sin \frac{a+b}{2} \cos \frac{a-b}{2} + \cos \frac{a+b}{2} \sin \frac{a-b}{2}$$

$$-\sin b = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}$$

これらの等式の左辺どうし右辺どうし引き算する.

$$-\sin b = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}$$
$$\sin a - \sin b = 2\cos \frac{a+b}{2} \sin \frac{a-b}{2}$$

実数
$$a,b$$
 について

余弦関数の加法定理より、
$$\cos a = \cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} - \sin\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

$$\cos b = \cos \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2} \ .$$
 これらの等式の左辺どうし右辺どうし引き算する.

$$\cos a = \cos \frac{a+b}{2} \cos \frac{a-b}{2} - \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$
$$- \cos b = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$

$$\frac{2}{\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}}$$

正弦関数の微分係数 $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h}$ を考える.

正弦関数の微分係数 $\lim_{h\to 0} \frac{\sin(a+h)-\sin a}{h}$ を考える. 変数 h について, a+h+a . a+h-a

$$\sin(a+h) - \sin a = 2\cos\frac{a+h+a}{2}\sin\frac{a+h-a}{2}$$
$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

正弦関数の微分係数 $\lim_{h \to 0} rac{\sin(a+h) - \sin a}{h}$ を考える. 変数 h について,

$$\sin(a+h) - \sin a = 2\cos\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = 2\cos\frac{2a+h}{2}\sin\frac{h}{2}$$
$$= 2\cos\left(a+\frac{h}{2}\right)\sin\frac{h}{2}$$

$$\sin(a+h) - \sin a = 2\cos\frac{a}{2}\sin\frac{a}{2} = 2\cos\frac{a}{2}\sin\frac{b}{2}$$
$$= 2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2}.$$

正弦関数の微分係数 $\lim_{h\to 0} \frac{\sin(a+h)-\sin a}{h}$ を考える. 変数 h について, $\sin(a+h) - \sin a = 2\cos\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = 2\cos\frac{2a+h}{2}\sin\frac{h}{2}$

$$= 2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2} .$$

$$=2\cos\left(a+rac{h}{2}
ight)\sinrac{h}{2}$$
 . 変数 t を $t=rac{h}{2}$ とおく. $h=2t$ なので,

正弦関数の微分係数 $\lim_{h o 0} rac{\sin(a+h) - \sin a}{h}$ を考える. 変数 h について, $\sin(a+h) - \sin a = 2\cos\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = 2\cos\frac{2a+h}{2}\sin\frac{h}{2}$

$$= 2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2} .$$

$$= 2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2} .$$

変数 t を $t=\frac{h}{2}$ とおく. h=2t なので,

 $\frac{\sin(a+h) - \sin a}{h} = \frac{2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2}}{h} = \frac{2\cos(a+t)\sin t}{2t}$

$$\frac{\sin(a+n) - \sin a}{h} = \frac{(2)}{h} = \frac{2\cos(a+t)\sin t}{2t}$$
$$= \frac{\cos(a+t)\sin t}{t}.$$

正弦関数の微分係数 $\lim_{h o 0} rac{\sin(a+h) - \sin a}{h}$ を考える. 変数 h について, $\sin(a+h) - \sin a = 2\cos\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = 2\cos\frac{2a+h}{2}\sin\frac{h}{2}$ $= 2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2} .$

変数
$$t$$
 を $t=\frac{h}{2}$ とおく. $h=2t$ なので,
$$\sin(a+h)-\sin a \qquad 2\cos\left(a+\frac{h}{2}\right)\sin\frac{h}{2} \qquad 2\cos(a+t)\sin t$$

$\frac{\sin(a+h) - \sin a}{h} = \frac{2\cos\left(a + \frac{h}{2}\right)\sin\frac{h}{2}}{h} = \frac{2\cos(a+t)\sin t}{2t}$

$$\frac{h}{h} = \frac{1}{h} = \frac{1}{2t}$$

$$= \frac{\cos(a+t)\sin t}{t}.$$

$$=\frac{\cos(a+t)\sin t}{t} \ .$$

$$h \to 0$$
 のとき $t = \frac{h}{2} \to 0$ なので、
$$\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \lim_{t \to 0} \frac{\cos(a+t)\sin t}{t} = \lim_{t \to 0} \left\{\cos(a+t)\frac{\sin t}{t}\right\}.$$

$$\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \lim_{t \to 0} \left\{ \cos(a+t) \frac{\sin t}{t} \right\}.$$

余弦関数
$$\cos x$$
 は連続なので $\lim_{t\to 0}\cos(a+t)=\cos\Bigl\{\lim_{t\to 0}(a+t)\Bigr\}=\cos a$. また $\lim_{t\to 0}\frac{\sin t}{t}=1$.

$$\lim_{t \to 0} \frac{\sin t}{t} = 1 \ .$$

 $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \lim_{t \to 0} \left\{ \cos(a+t) \frac{\sin t}{t} \right\}.$

余弦関数
$$\cos x$$
 は連続なので $\lim_{t\to 0}\cos(a+t)=\cos\Bigl\{\lim_{t\to 0}(a+t)\Bigr\}=\cos a$. また $\lim_{t\to 0}\frac{\sin t}{t}=1$. よって,

$$t = 1 \cdot 3 \cdot \zeta,$$

$$\lim_{t \to \infty} \left\{ \cos(a + t) \cdot \frac{\sin t}{\cos(a + t)} \right\} = \lim_{t \to \infty} \cos(a + t) \cdot \lim_{t \to \infty} \frac{\sin t}{\cos(a + t)} = \cos a \cdot 1 = \cos a$$

$$\lim_{t \to 0} \left\{ \cos(a+t) \frac{\sin t}{t} \right\} = \lim_{t \to 0} \cos(a+t) \cdot \lim_{t \to 0} \frac{\sin t}{t} = \cos a \cdot 1 = \cos a.$$

 $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \lim_{t \to 0} \left\{ \cos(a+t) \frac{\sin t}{t} \right\}.$

余弦関数
$$\cos x$$
 は連続なので $\lim_{t\to 0}\cos(a+t)=\cos\Bigl\{\lim_{t\to 0}(a+t)\Bigr\}=\cos a$. また $\lim_{t\to 0}\frac{\sin t}{t}=1$. よって,

 $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \lim_{t \to 0} \left\{ \cos(a+t) \frac{\sin t}{t} \right\}.$

$$\lim_{t\to 0} \left\{\cos(a+t)\frac{\sin t}{t}\right\} = \lim_{t\to 0}\cos(a+t)\cdot\lim_{t\to 0}\frac{\sin t}{t} = \cos a\cdot 1 = \cos a.$$
 実数 a における正弦関数 $\sin x$ の微分係数は $\lim_{h\to 0}\frac{\sin(a+h)-\sin a}{h} = \cos a$

である.

余弦関数の微分係数 $\lim_{h o 0} rac{\cos(a+h) - \cos a}{h}$ を考える.

余弦関数の微分係数 $\lim_{h \to 0} rac{\cos(a+h) - \cos a}{h}$ を考える. 変数 h について,

$$\cos(a+h) - \cos a = -2\sin\frac{a+h+a}{2}\sin\frac{a+h-a}{2}$$
$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos(a+h) - \cos a = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

余弦関数の微分係数
$$\lim_{h\to 0} \frac{\cos(a+h)-\cos a}{h}$$
 を考える. 変数 h について, $\cos(a+h)-\cos a=-2\sin\frac{a+h+a}{h}\sin\frac{a+h-a}{h}=-2\sin\frac{2a+h}{h}\sin\frac{h}{h}$

$$\cos(a+h) - \cos a = -2\sin\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = -2\sin\frac{2a+h}{2}\sin\frac{h}{2}$$

$$\cos(a+h) - \cos a = -2\sin\frac{a+h+a}{2}\sin\frac{a+h}{2} = -2\sin\frac{2a+h}{2}\sin\frac{h}{2}$$
$$= -2\sin\left(a+\frac{h}{2}\right)\sin\frac{h}{2}.$$

余弦関数の微分係数 $\lim_{h \to 0} rac{\cos(a+h) - \cos a}{h}$ を考える. 変数 h について, $\cos(a+h) - \cos a = -2\sin\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = -2\sin\frac{2a+h}{2}\sin\frac{h}{2}$

$$\cos(a+h) - \cos a = -2\sin\frac{\pi}{2}\sin\frac{\pi}{2} = -2\sin\frac{\pi}{2}\sin\frac{\pi}{2}$$
$$= -2\sin\left(a+\frac{h}{2}\right)\sin\frac{h}{2}.$$

$$= -2\sin\left(a + \frac{h}{2}\right)\sin\frac{h}{2} \ .$$

			=-5	$2\sin$	(a +	$-\frac{n}{2}$) $\sin\frac{n}{2}$.
, <u>+</u>	,	h	L +> /	1	0.1	***

変数 t を $t=\frac{n}{2}$ とおく. h=2t なので,

余弦関数の微分係数 $\lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h}$ を考える. 変数 h について, $\cos(a+h) - \cos a = -2\sin\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = -2\sin\frac{2a+h}{2}\sin\frac{h}{2}$

$$2$$
 2 2 2 $= -2\sin\left(a+\frac{h}{2}\right)\sin\frac{h}{2}$. 変数 t を $t=\frac{h}{2}$ とおく. $h=2t$ なので,

$$\frac{\cos(a+h) - \cos a}{h} = \frac{-2\sin\left(a + \frac{h}{2}\right)\sin\frac{h}{2}}{h} = -\frac{2\sin(a+t)\sin t}{2t}$$

$$\frac{\cos(a+h) - \cos a}{h} = \frac{-2\sin(a+\frac{\pi}{2})\sin\frac{\pi}{2}}{h} = -\frac{2\sin(a+t)\sin t}{2t}$$
$$= -\frac{\sin(a+t)\sin t}{t}.$$

余弦関数の微分係数 $\lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h}$ を考える. 変数 h について, $\cos(a+h) - \cos a = -2\sin\frac{a+h+a}{2}\sin\frac{a+h-a}{2} = -2\sin\frac{2a+h}{2}\sin\frac{h}{2}$ $= -2\sin\left(a + \frac{h}{2}\right)\sin\frac{h}{2} .$

変数
$$t$$
 を $t=\frac{h}{2}$ とおく. $h=2t$ なので, $\cos(a+h)-\cos a$ $-2\sin\left(a+\frac{h}{2}\right)\sin\frac{h}{2}$ $2\sin(a+t)\sin t$

$$\frac{\cos(a+h) - \cos a}{h} = \frac{-2\sin\left(a + \frac{h}{2}\right)\sin\frac{h}{2}}{h} = -\frac{2\sin(a+t)\sin t}{2t}$$
$$= -\frac{\sin(a+t)\sin t}{2}$$

 $= -\frac{\sin(a+t)\sin t}{t} .$

h o 0 のとき $t = \frac{h}{2} o 0$ なので、

 $\lim_{h\to 0}\frac{\cos(a+h)-\cos a}{h}=\lim_{t\to 0}\biggl\{-\frac{\sin(a+t)\sin t}{t}\biggr\}=\lim_{t\to 0}\biggl\{-\sin(a+t)\frac{\sin t}{t}\biggr\}\ .$

$$\lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h} = \lim_{t \to 0} \left\{ -\sin(a+t) \frac{\sin t}{t} \right\}.$$

正弦関数
$$\sin x$$
 は連続なので $\lim_{t\to 0}\sin(a+t)=\sin\Bigl\{\lim_{t\to 0}(a+t)\Bigr\}=\sin a$. また $\lim_{t\to 0}\frac{\sin t}{t}=1$.

 $\lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h} = \lim_{t \to 0} \left\{ -\sin(a+t) \frac{\sin t}{t} \right\}.$

 $\lim_{t \to 0} \frac{\sin t}{t} = 1 .$

$$\lim_{t\to 0} \frac{1}{t}$$

正弦関数
$$\sin x$$
 は連続なので $\lim_{t\to 0}\sin(a+t)=\sin\Bigl\{\lim_{t\to 0}(a+t)\Bigr\}=\sin a$. また $\lim_{t\to 0}\frac{\sin t}{t}=1$. よって

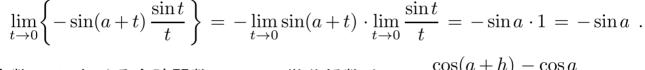
$$\lim_{t \to 0} \frac{\sin t}{t} = 1 . よって$$

$$\lim_{t \to 0} \left\{ -\sin(a+t) \frac{\sin t}{t} \right\} = -\lim_{t \to 0} \sin(a+t) \cdot \lim_{t \to 0} \frac{\sin t}{t} = -\sin a \cdot 1 = -\sin a .$$

 $\lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h} = \lim_{t \to 0} \left\{ -\sin(a+t) \frac{\sin t}{t} \right\}.$

正弦関数
$$\sin x$$
 は連続なので $\lim_{t\to 0}\sin(a+t)=\sin\Bigl\{\lim_{t\to 0}(a+t)\Bigr\}=\sin a$. また $\lim_{t\to 0}\frac{\sin t}{t}=1$. よって

 $\lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h} = \lim_{t \to 0} \left\{ -\sin(a+t) \frac{\sin t}{t} \right\}.$



実数 a における余弦関数 $\cos x$ の微分係数は $\lim_{h\to 0} \frac{\cos(a+h)-\cos a}{h} = -\sin a$

実数
$$a$$
 における余弦関数 $\cos x$ の微分係数は $\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} =$ である.

定理 任意の実数
$$a$$
 に対して, a における正弦関数 $\sin x$ の微分係数は
$$\lim_{h\to 0} \frac{\sin(a+h) - \sin a}{h} = \cos a \; ,$$

$$\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \cos a ,$$

$$h o 0$$
 h a における余弦関数 $\cos x$ の微分係数は

 $\boxed{M} \; rac{2\pi}{3} \;$ における余弦関数 $\cos x \;$ の微分係数を求める.

実数 a における余弦関数 $\cos x$ の微分係数は $-\sin a$ である.

例
$$\frac{2\pi}{3}$$
 における余弦関数 $\cos x$ の微分係数を求める.
実数 a における余弦関数 $\cos x$ の微分係数は $-\sin a$ である.

 $-\sin\frac{2\pi}{3} = -\sin\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$.

大数。「このこの示」は例数	この は の	$-\sin a$	C 60 G	
2π				
$\frac{2\pi}{m}$ における全球関数 $_{ m co}$	~ の微公区数け			

<i></i>		3X 000 00 10 10 10 10 10 10 10 10 10 10 10	bill a C by b.
2π		$\cos x$ の微分係数は	
Z / l	ノーナンノムフ A コナ 日日 米ト	の他八万米は	
	における宗弘関剱	$\cos x$ の似分係致は	
3			

実数 a における正弦関数 $\sin x$ の微分係数は $\cos a$ である.

問
$$\frac{5\pi}{6}$$
 における正弦関数 $\sin x$ の微分係数を求めよ. 実数 a における正弦関数 $\sin x$ の微分係数は $\cos a$ である.

 $\cos \frac{5\pi}{6} = \cos \left(\frac{\pi}{3} + \frac{\pi}{2} \right) = -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2}$.

実数
$$a$$
 における正弦関数 $\sin x$ の微分係数は $\cos a$ である.

美	a における止弦関	致 $\sin x$	の似分係剱は	$\cos a$	じめる.	
5π .	- ls / l フ - コ -ロロル/		ML 11 17 14L 1 1			
$\frac{-6}{6}$ (3	こおける正弦関数	$\sin x$ (1)	微分係致は			

 $|\underline{M}|$ 実数全体を定義域とする関数 f を $f(x)=\sin 5x$ と定める. 微分係数の定 義に直接従って、実数 a における関数 f の微分係数を調べる.

$$|\underline{M}|$$
 実数全体を定義域とする関数 f を $f(x) = \sin 5x$ と定める. 微分係数の定義に直接従って、実数 a における関数 f の微分係数を調べる.
$$5(2a+h) = 5h$$

$$f(a+h) - f(a) = \sin\{5(a+h)\} - \sin 5a = 2\cos\frac{5(2a+h)}{2}\sin\frac{5h}{2}$$
$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

|例| 実数全体を定義域とする関数
$$f$$
 を $f(x) = \sin 5x$ と定める。微分係数の定義に直接従って、実数 a における関数 f の微分係数を調べる。
$$5(2a+h) = 5h$$

$$f(a+h) - f(a) = \sin\{5(a+h)\} - \sin 5a = 2\cos\frac{5(2a+h)}{2}\sin\frac{5h}{2}$$
$$= 2\cos\left(5a + \frac{5h}{2}\right)\sin\frac{5h}{2}.$$

|例| 実数全体を定義域とする関数
$$f$$
 を $f(x)=\sin 5x$ と定める。微分係数の定義に直接従って、実数 a における関数 f の微分係数を調べる。
$$f(a+h)-f(a)=\sin\{5(a+h)\}-\sin 5a=2\cos\frac{5(2a+h)}{2}\sin\frac{5h}{2}$$

$$f(a+h) - f(a) = \sin\{5(a+h)\} - \sin 5a = 2\cos\frac{5(2a+h)}{2}\sin\frac{5h}{2}$$
$$= 2\cos\left(5a + \frac{5h}{2}\right)\sin\frac{5h}{2}.$$

$$=2\cos\left(5a+\frac{3n}{2}\right)\sin\frac{3n}{2}.$$

$$\begin{pmatrix} 2 \end{pmatrix} \qquad 2$$

変数
$$x$$
 を $x=\frac{5h}{2}$ とおく. $h=\frac{2x}{5}$ なので,

例 実数全体を定義域とする関数
$$f$$
 を $f(x)=\sin 5x$ と定める。微分係数の定義に直接従って、実数 a における関数 f の微分係数を調べる。
$$f(a+h)-f(a)=\sin\{5(a+h)\}-\sin 5a=2\cos\frac{5(2a+h)}{2}\sin\frac{5h}{2}$$

$$=2\cos\left(5a+\frac{5h}{2}\right)\sin\frac{5h}{2} \ .$$
 変数 x を $x=\frac{5h}{2}$ とおく。 $h=\frac{2x}{5}$ なので,

$$\frac{f(a+h) - f(a)}{h} = \frac{2\cos\left(5a + \frac{5h}{2}\right)\sin\frac{5h}{2}}{h} = \frac{2\cos(5a + x)\sin x}{\frac{2x}{5}}$$

 $=5\cos(5a+x)\frac{\sin x}{x}.$

$$\frac{f(a+h) - f(a)}{h} = 5\cos(5a+x)\frac{\sin x}{x} .$$

$$h \to 0$$
 のとき $x = \frac{5h}{2} \to 0$.

 $\frac{f(a+h)-f(a)}{h} = 5\cos(5a+x)\frac{\sin x}{x}.$

$$x = \frac{3n}{2}$$

$$h \to 0$$
 のとき $x = \frac{5h}{2} \to 0$. 余弦関数 $\cos x$ は連続なので
$$\lim_{x \to 0} \cos(5a + x) = \cos \Big\{ \lim_{x \to 0} (5a + x) \Big\} = \cos(5a) \ .$$

 $\frac{f(a+h)-f(a)}{h} = 5\cos(5a+x)\frac{\sin x}{x}.$

$$\lim_{x \to 0} \cos(5a + x) = \cos\{\lim_{x \to 0} (5a + x)\} = \cos(5a).$$

$$h o 0$$
 のとき $x = \frac{5h}{2} o 0$. 余弦関数 $\cos x$ は連続なので $\lim \cos(5a+x) = \cos\{\lim (5a+x)\} = \cos(5a+x)$

$$\lim_{x \to 0} \cos(5a + x) = \cos \left\{ \lim_{x \to 0} (5a + x) \right\} = \cos(5a) .$$

 $\frac{f(a+h)-f(a)}{h} = 5\cos(5a+x)\frac{\sin x}{x}.$

$$h \to 0$$
 のとき $x = \frac{5h}{2} \to 0$. 余弦関数 $\cos x$ は連続なので
$$\lim_{x \to 0} \cos(5a + x) = \cos \left\{ \lim_{x \to 0} (5a + x) \right\} = \cos(5a) \ .$$
また $\lim_{x \to 0} \frac{\sin x}{x} = 1$. 実数 a における f の微分係数は
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to 0} \left\{ 5\cos(5a + x) \frac{\sin x}{x} \right\}$$

 $=5\cos 5a$.

 $\frac{f(a+h)-f(a)}{L} = 5\cos(5a+x)\frac{\sin x}{x}.$

$$\lim_{h \to 0} \frac{1}{h} = \lim_{x \to 0} \left\{ 5\cos(5a + x) \frac{1}{x} \right\}$$

$$= 5 \left\{ \lim_{x \to 0} \cos(5a + x) \right\} \cdot \lim_{x \to 0} \frac{\sin x}{x}$$

$$= 5\cos(5a) \cdot 1$$

 $| \mathbb{B} | 2.8 |$ 実数全体を定義域とする関数 f を $| f(x) = \cos 3x |$ と定める. 微分係数 の定義に直接従って、実数 a における関数 f の微分係数を調べよ. $f(a+h)-f(a) = \cos\{$ $\}-\cos = -2\sin\frac{\pi}{2}$ $=-2\sin\left(\right)\sin$.

変数
$$x$$
 を $x=$ とおく. $h=$ なので、 $-2\sin\left(\begin{array}{ccc} & \\ \end{array}\right)_{\sin}$

$$\frac{f(a+h)-f(a)}{h} = \frac{-2\sin\left(\begin{array}{c} \\ \\ \end{array}\right)\sin\left(\begin{array}{c} \\ \\ \end{array}\right)\cos\left(\begin{array}{c} \\ \\ \end{array}\right)\cos\left(\begin{array}{c} \\ \\ \end{array}\right)\cos\left(\begin{array}{c} \\ \\ \end{array}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{-2\sin\left(\begin{array}{c} \\ \\ \\ \end{array}\right)\sin\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$$

= $\sin($ $)\frac{\sin}{}$.

閏
$$2.8$$
 実数全体を定義域とする関数 f を $f(x)=\cos 3x$ と定める.微分係数の定義に直接従って,実数 a における関数 f の微分係数を調べる.
$$f(a+h)-f(a)=\cos \{3(a+h)\}-\cos 3a=-2\sin \frac{3(2a+h)}{2}\sin \frac{3h}{2}$$

$$=-2\sin \left(3a+\frac{3h}{2}\right)\sin \frac{3h}{2} \ .$$
 変数 x を $x=\frac{3h}{2}$ とおく. $h=\frac{2x}{2}$ なので,

 $\frac{f(a+h) - f(a)}{h} = \frac{-2\sin\left(3a + \frac{3h}{2}\right)\sin\frac{3h}{2}}{h} = -\frac{2\sin(3a+x)\sin x}{\frac{2x}{3}}$

 $= -3\sin(3a+x)\frac{\sin x}{x}.$

$$\lim_{x\to 0}\sin(3a+x)=\sin\Bigl\{\lim_{x\to 0}(3a+x)\Bigr\}=\sin(3a)\ .$$
 また
$$\lim_{x\to 0}\frac{\sin x}{x}=1\ .\ a$$
 における f の微分係数は
$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=\lim_{x\to 0}\Bigl\{-3\sin(3a+x)\frac{\sin x}{x}\Bigr\}$$

 $=-3\sin(3a)\cdot 1$

 $\frac{f(a+h)-f(a)}{r} = -3\sin(3a+x)\frac{\sin x}{r} .$

h o 0 のとき $x = \frac{3h}{2} o 0$. 正弦関数 $\sin x$ は連続なので

終

 $=-3\sin 3a$.

 $= -3 \left\{ \lim_{x \to 0} \sin(3a + x) \right\} \cdot \lim_{x \to 0} \frac{\sin x}{x}$