4.4 関数の右極限と左極限

囲だけで考えるときや,x < a の範囲だけで考えるときがある.

変数 x の値を定数 a に近づけるときの関数の極限について、 x>a の範

囲だけで考えるときや,x < a の範囲だけで考えるときがある.x > a の範囲だけで x の値を a に近づけることを $x \to a + 0$ と書き表し,このときの極限を右極限という.

変数 x の値を定数 a に近づけるときの関数の極限について、 x>a の範

変数 x の値を定数 a に近づけるときの関数の極限について, x>a の範囲だけで考えるときや, x<a の範囲だけで考えるときがある. x>a の範囲だけで x の値を a に近づけることを $x\to a+0$ と書き表し, このときの極限を右極限という. また. x<a の範囲だけで x の値を a に近づけるこ

とを $x \rightarrow a-0$ と書き表し、このときの極限を左極限という。

変数 x の値を定数 a に近づけるときの関数の極限について, x>a の範囲だけで考えるときや, x<a の範囲だけで考えるときがある. x>a の範囲だけで x の値を a に近づけることを $x\to a+0$ と書き表し、このときの

極限を右極限という。また、x < a の範囲だけで x の値を a に近づけることを $x \rightarrow a - 0$ と書き表し、このときの極限を左極限という。数直線上にお

いて、右極限を表す $x \to a+0$ は x の値を a の右側から a に近づけることであり、左極限を表す $x \to a-0$ は x の値を a の左側から a に近づけることである.

例 区間
$$[0,4]$$
 を定義域とする関数 φ を次のように定める:
$$\varphi(x) = \begin{cases} x^2 & \text{(} 0 \leq x < 2 \text{ } \text{ obs} \end{cases}$$

$$\varphi(x) = \begin{cases} x^2 & (0 \le x < 2 \text{ のとき}) \\ 3x - 5 & (2 \le x \le 4 \text{ のとき}) \end{cases}.$$

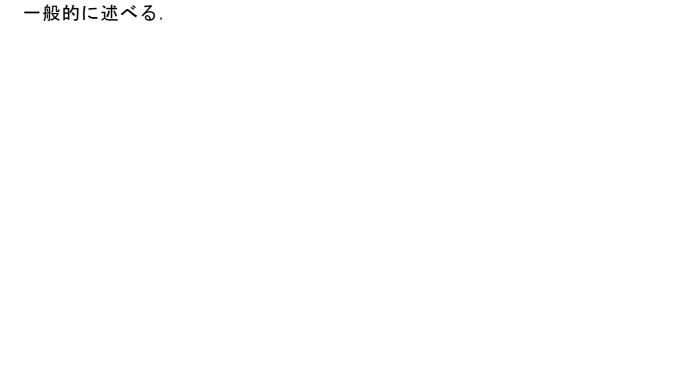
例 区間
$$[0,4]$$
 を定義域とする関数 φ を次のように定める:
$$\varphi(x) = \begin{cases} x^2 & \text{(}~0 \leq x < 2~\text{のとき)}\\ 3x-5 & \text{(}~2 \leq x \leq 4~\text{のとき)} \end{cases}.$$

 $| \overline{M} |$ 区間 [0,4] を定義域とする関数 arphi を次のように定める: $\varphi(x) = \begin{cases} x^2 & \text{(} 0 \le x < 2 \text{ のとき)} \\ 3x - 5 & \text{(} 2 < x < 4 \text{ のとき)} \end{cases}.$ 変数 x について、2 < x < 4 のとき $\varphi(x)=3x-5$ なので、 x>2 の範囲 で x の値を 2 に限りなく近づけてい くと、 $\varphi(x)$ の値は $3 \cdot 2 - 5 = 1$ に限 りなく近づいていく. 2

 $| \overline{M} |$ 区間 [0,4] を定義域とする関数 arphi を次のように定める: $\varphi(x) = \begin{cases} x^2 & \text{(} 0 \le x < 2 \text{ のとき)} \\ 3x - 5 & \text{(} 2 < x < 4 \text{ のとき)} \end{cases}.$ 変数 x について、2 < x < 4 のとき $\varphi(x)=3x-5$ なので、 x>2 の範囲 で x の値を 2 に限りなく近づけてい くと、 $\varphi(x)$ の値は $3 \cdot 2 - 5 = 1$ に限 りなく近づいていく. このようなとき. 1 を $\varphi(x)$ の右極限値といい,この右 極限値を $\lim_{x \to 2+0} \varphi(x)$ と書き表す: $\lim_{x \to 2+0} \varphi(x) = 1 .$

 $| \overline{M} |$ 区間 [0,4] を定義域とする関数 arphi を次のように定める: $\varphi(x) = \begin{cases} x^2 & \text{(} 0 \le x < 2 \text{ のとき)} \\ 3x - 5 & \text{(} 2 < x < 4 \text{ のとき)} \end{cases}.$ 変数 x について、0 < x < 2 のとき $\varphi(x)=x^2$ なので、x<2 の範囲で x の値を 2 に限りなく近づけていく と, $\varphi(x)$ の値は $2^2=4$ に限りなく 近づいていく. 2

|M|区間 [0,4] を定義域とする関数 arphi を次のように定める: $\varphi(x) = \begin{cases} x^2 & \text{(} 0 \le x < 2 \text{ のとき)} \\ 3x - 5 & \text{(} 2 < x < 4 \text{ のとき)} \end{cases}.$ 変数 x について、0 < x < 2 のとき $\varphi(x)=x^2$ なので、x<2 の範囲で x の値を 2 に限りなく近づけていく と, $\varphi(x)$ の値は $2^2=4$ に限りなく 近づいていく. このようなとき. 4 を arphi(x) の左極限値といい,この左極限 値を $\lim_{x\to 2-0} \varphi(x)$ と書き表す: $\lim_{x \to 2-0} \varphi(x) = 4 .$



関数 f 及び実数 a について、f の定義域の実数を表す変数 x の値を x > a である範囲で a に限りなく近づけることができて. x の値を x>a である範囲で a に限りなく近づけると

f の値 f(x) が唯一つの定数 c に限りなく近づく

とき, $x \to a+0$ のとき f(x) は c に収束するといい, c を f の右極限 (値)という.

,			
ľ			
١	١		

x > a である範囲で a に限りなく近づけることができて. x の値を x > a である範囲で a に限りなく近づけると

関数 f 及び実数 a について、f の定義域の実数を表す変数 x の値を

f の値 f(x) が唯一つの定数 c に限りなく近づく とき, $x \to a+0$ のとき f(x) は c に収束するといい, c を f の右極限

(値) という. $x \rightarrow a+0$ のとき関数 f(x) が収束するならば、そのときの右

極限値を

 $\lim_{x \to a+0} f(x)$

と書き表す. 特に a=0 のとき, $x\to 0+0$ を $x\to +0$ と略記する.

関数 f 及び実数 a について、f の定義域の実数を表す変数 x の値を x < a である範囲で a に限りなく近づけることができて. x の値を x < a である範囲で a に限りなく近づけると

f の値 f(x) が唯一つの定数 c に限りなく近づく

とき, $x \to a-0$ のとき f(x) は c に収束するといい, c を f の左極限

(値)という.

(
	•	•	

x < a である範囲で a に限りなく近づけることができて. x の値を x < a である範囲で a に限りなく近づけると

関数 f 及び実数 a について、f の定義域の実数を表す変数 x の値を

f の値 f(x) が唯一つの定数 c に限りなく近づく とき, $x \to a-0$ のとき f(x) は c に収束するといい, c を f の左極限

(値) という.
$$x \to a-0$$
 のとき関数 $f(x)$ が収束するならば、そのときの左

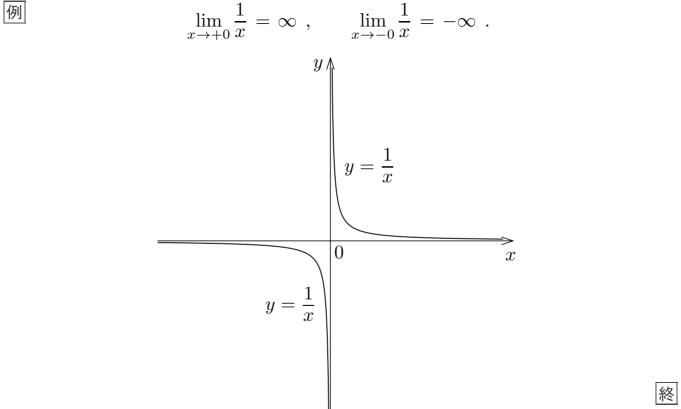
極限値を

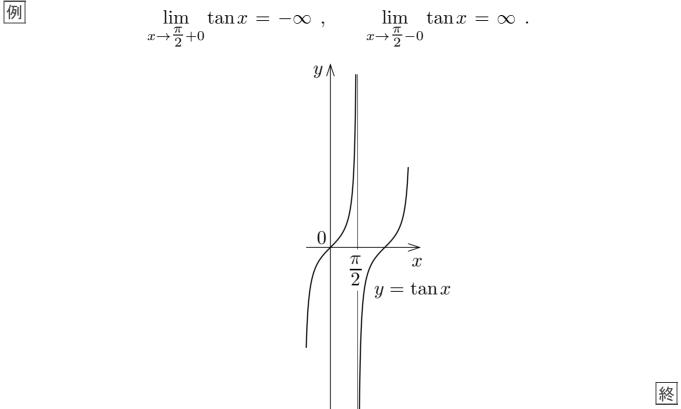
駆限値を
$$\lim_{x \to \infty} f(x)$$

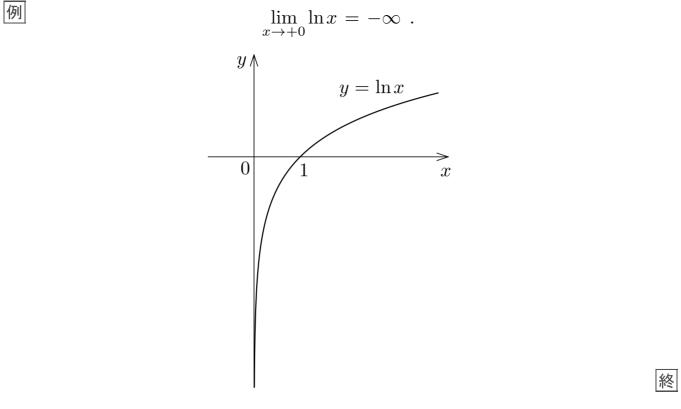
 $\lim_{x \to a-0} f(x)$

と書き表す. 特に
$$a=0$$
 のとき, $x\to 0-0$ を $x\to -0$ と略記する.

関数の右極限および左極限においても ∞ あるいは $-\infty$ に発散することがある.







定理 関数 f 及び実数 a,c について,

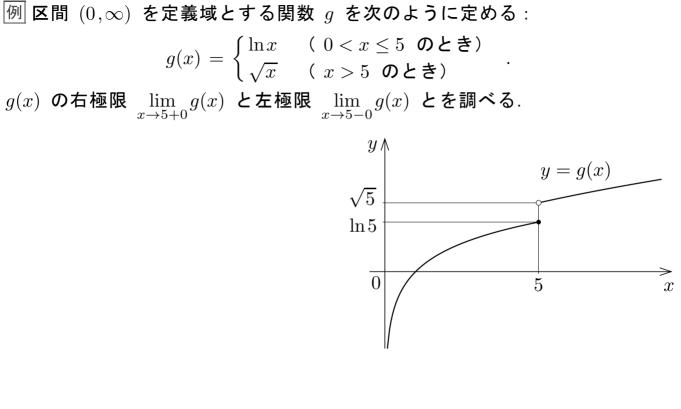
次の定理が成り立つ(証明は略す).

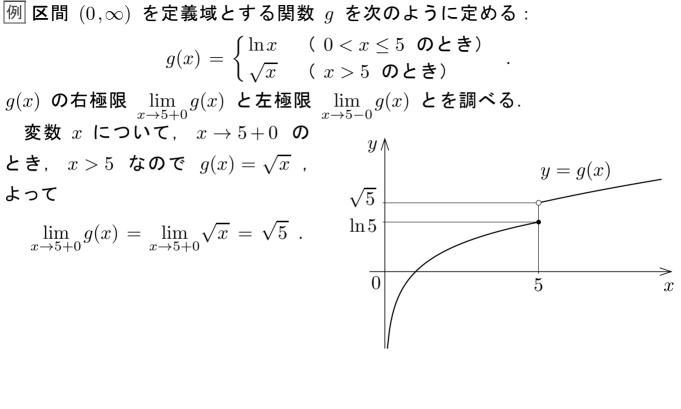
$$\lim_{x \to a} f(x) = c \iff \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = c.$$

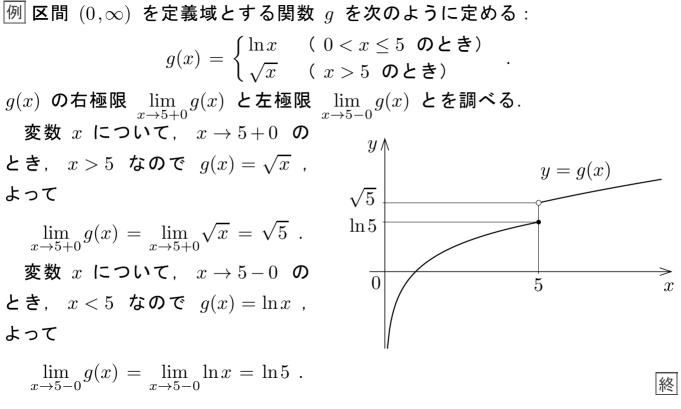
例 区間
$$(0,\infty)$$
 を定義域とする関数 g を次のように定める:
$$g(x) = \begin{cases} \ln x & (0 < x \leq 5) \\ - & (0 < x \leq 5) \end{cases}$$

 $g(x) = \begin{cases} \ln x & (0 < x \le 5 \text{ のとき}) \\ \sqrt{x} & (x > 5 \text{ のとき}) \end{cases}.$

g(x) の右極限 $\lim_{x \to 5+0} g(x)$ と左極限 $\lim_{x \to 5-0} g(x)$ とを調べる.







 $\boxed{\mathbb{B}4.4.1}$ 区間 (0,10] を定義域とする関数 f を次のように定める: $f(x) = \begin{cases} \log_2 x & (0 < x < 8 \text{ のとき}) \\ \frac{4}{x^{\frac{3}{3}}} & (8 \le x \le 10 \text{ のとき}) \end{cases}.$

$$f(x)$$
 の右極限 $\lim_{x \to 8+0} f(x)$ と左極限 $\lim_{x \to 8-0} f(x)$ とを調べよ.

8 < x < 10 のとき f(x) = なので,

$$x \le 10$$
 ගිදිපි $f(x) = x$ ගිලි, $\lim_{x \to \infty} f(x) = \lim_{x \to$

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0}$$

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0} .$$

$$x o 8+0$$
 $x o 8+0$ $x o 8+0$ $x o 8+0$ なので,

$$8$$
 のとき $f(x)=$ なので、

$$0 < x < 8$$
 のとき $f(x) =$ なので、

のとき
$$f(x)=$$
 なので、

$$z \in f(x) = y \in \mathcal{G}(x)$$

$$\lim_{x \to 8-0} f(x) = \lim_{x \to 8-0} .$$

問
$$4.4.1$$
 区間 $(0,10]$ を定義域とする関数 f を次のように定める:
$$f(x) = \begin{cases} \log_2 x & (0 < x < 8 \text{ のとき}) \\ \frac{4}{x^{\frac{4}{3}}} & (8 \le x \le 10 \text{ のとき}) \end{cases}$$
 $f(x)$ の右極限 $\lim_{x \to 8+0} f(x)$ と左極限 $\lim_{x \to 8+0} f(x)$ とを調べよ.

$$f(x)$$
 の右極限 $\lim_{x \to 8+0} f(x)$ と左極限 $\lim_{x \to 8-0} f(x)$ とを調べよ. $8 \le x \le 10$ のとき $f(x) = x^{\frac{4}{3}}$ なので,

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0} x^{\frac{4}{3}} =$$

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0} x^{\frac{1}{3}} =$$

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0} x^{\frac{4}{3}} =$$

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0} x^{\frac{2}{3}} =$$

$$\lim_{x \to 8+0} f(x) = \lim_{x \to 8+0} x^{\frac{4}{3}} = 8^{\frac{4}{3}} = (2^3)^{\frac{4}{3}} = 2^4 = 16.$$

$$3 = 8$$

$$0 < x < 8$$
 のとき $f(x) = \log_2 x$ なので、

$$m = \log 8 = \log 2^3 = 3$$

$$x = \log_2 8 = \log_2 2^3 = 3$$

$$x = \log_2 8 = \log_2 2^3 = 3.$$

$$\lim_{x \to 8-0} f(x) = \lim_{x \to 8-0} \log_2 x = \log_2 8 = \log_2 2^3 = 3.$$

終

定数 a と b とは実数または ∞ または $-\infty$ とする. 関数 f(x) と関 数 g(x) との合成関数 g(f(x)) があるとする. y=f(x) とおく. $x \to a$

のとき $y \to b$, $y \neq b$ で, $y \to b$ のとき q(y) が収束するならば, $\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y) .$

この定理は $x \to a+0$ のときや $x \to a-0$ のときなども成り立つ.

次の定理があった.

例	変数	x	について	$x \to +0$	のときの	$\frac{1}{\ln x}$	の極限を調べる.

例 変数
$$x$$
 について $x \to +0$ のときの $\frac{1}{\ln x}$ の極限を調べる. $y = \ln x$ とおく. $x \to +0$ のとき $y = \ln x \to -\infty$ なので, $\lim \frac{1}{x} = \lim \frac{1}{x} = 0$

$$\lim_{x \to +0} \frac{1}{\ln x} = \lim_{y \to -\infty} \frac{1}{y} = 0.$$

$$\lim_{x \to +0} \frac{1}{\ln x} = \lim_{y \to -\infty} \frac{1}{y} = 0.$$

$$\lim_{x \to +0} \frac{1}{\ln x} = \lim_{y \to -\infty} \frac{1}{y} = 0.$$

例 変数 x について $x o rac{\pi}{2} - 0$ のときの $\left(rac{5}{6}
ight)^{ an x}$ の極限を調べる.

例 変数
$$x$$
 について $x \to \frac{\pi}{2} - 0$ のときの $\left(\frac{5}{6}\right)^{\tan x}$ の極限を調べる. $y = \tan x$ とおく. $x \to \frac{\pi}{2} - 0$ のとき $y = \tan x \to \infty$ なので,

終

$$y= an x$$
 とおく. $x o rac{\pi}{2}-0$ のとき $y= an x o \infty$ なので、

$$\tan x$$
 とおく. $x o rac{\pi}{2} - 0$ のとき $y = \tan x o \infty$ なので, $\lim_{x o rac{\pi}{2} - 0} \left(rac{5}{6}
ight)^{ an x} = \lim_{y o \infty} \left(rac{5}{6}
ight)^y = 0$.

$$\operatorname{an} x$$
 とおく. $x o rac{\pi}{2} - 0$ のとき $y = \operatorname{tan} x o \infty$ なので, $(5)^{\operatorname{tan} x}$ に $(5)^y$ 。

$$an x$$
 とおく. $x o rac{\pi}{2} - 0$ のとき $y = an x o \infty$ なので、 $\lim_{x o 0} \left(rac{5}{2}
ight)^{ an x} - \lim_{x o 0} \left(rac{5}{2}
ight)^{y} - 0$

$$\boxed{ \mathbb{B}4.4.2(1) }$$
 極限 $\lim_{x \to +0} (\log_2 x)^3$ について、収束するならば極限値を求め、発散するならば ∞ に発散するのか $-\infty$ に発散するのかどちらでもないのか調べよ

べよ.

変数
$$y$$
 を $y=\log_2 x$ とおく. $x\to +0$ のとき $y=\log_2 x\to$ なので,
$$\lim_{x\to +0}(\log_2 x)^3=\lim_{y\to +\infty}=0$$
 .

$$\boxed{ \mathbb{B}4.4.2(1) }$$
 極限 $\lim_{x \to +0} (\log_2 x)^3$ について、収束するならば極限値を求め、発散するならば ∞ に発散するのか $-\infty$ に発散するのかどちらでもないのか調べよ

べよ. 変数 y を $y = \log_2 x$ とおく. $x \to +0$ のとき $y = \log_2 x \to -\infty$ なので、

$$\lim_{x \to \infty} y = \log_2 x = 2$$
 is $\lim_{x \to \infty} y = \log_2 x \to -\infty$ if $\lim_{x \to \infty} (\log_2 x)^3 = \lim_{x \to \infty} y^3 = -\infty$.

$$\lim_{x \to +0} (\log_2 x)^3 = \lim_{y \to -\infty} y^3 = -\infty .$$

$$\lim_{x \to +0} (\log_2 x)^3 = \lim_{y \to -\infty} y^3 = -\infty .$$

$$\lim_{x \to +0} (\log_2 x) = \lim_{y \to -\infty} y = -\infty .$$

$$x \mapsto y \mapsto \infty$$

 $\boxed{\mathbb{B}4.4.2(2)}$ 極限 $\lim_{x \to \frac{\pi}{2} + 0} \frac{5}{3 + \tan x}$ について、収束するならば極限値を求め、発 散するならば ∞ に発散するのか $-\infty$ に発散するのかどちらでもないのか調 べよ.

ミンス 変数
$$y$$
 を $y= an x$ とおく. $x o rac{\pi}{2}+0$ のとき $y= an x o$ なの

変数
$$y$$
 を $y = \tan x$ とおく. $x \to \frac{\pi}{2} + 0$ のとき $y = \tan x \to$ なので、 $\lim_{x \to \frac{\pi}{2} + 0} (3 + \tan x) = \lim_{y \to \infty} ($) $=$ 、よって

で,
$$\lim_{x \to \frac{\pi}{2} + 0} (3 + \tan x) = \lim_{y \to \infty} ($$
) $=$, よって

$$\lim_{x \to \frac{\pi}{2} + 0} \frac{5}{3 + \tan x} = \lim_{y \to \infty} = .$$

 $\boxed{\mathbb{B}4.4.2(2)}$ 極限 $\lim_{x \to \frac{\pi}{2} + 0} \frac{5}{3 + \tan x}$ について、収束するならば極限値を求め、発 散するならば ∞ に発散するのか $-\infty$ に発散するのかどちらでもないのか調 べよ.

変数 y を $y = \tan x$ とおく. $x \to \frac{\pi}{2} + 0$ のとき $y = \tan x \to -\infty$ なの

で,
$$\lim_{x \to \frac{\pi}{2} + 0} (3 + \tan x) = \lim_{y \to -\infty} (3 + y) = -\infty$$
, よって

$$x \to \frac{\pi}{2} + 0$$

$$y \to -\infty$$

$$y \to -\infty$$

$$y \to -\infty$$

$$\lim_{3 \to 3} \frac{5}{3 \to 3} = \lim_{3 \to 3} \frac{5}{3 \to 3} = 0.$$

$$\lim_{\pi \to 0} \frac{5}{3 + \tan x} = \lim_{n \to \infty} \frac{5}{3 + n} = 0$$
.

$$\lim_{5 \to 1} \frac{5}{2 + 4 \sin x} = \lim_{5 \to 1} \frac{5}{2 + \sin x} = 0$$
.

$$\lim_{x \to \frac{\pi}{2} + 0} \frac{5}{3 + \tan x} = \lim_{y \to -\infty} \frac{5}{3 + y} = 0.$$

$$\lim_{x \to \frac{\pi}{2} + 0} \frac{3}{3 + \tan x} = \lim_{y \to -\infty} \frac{3}{3 + y} = 0.$$

$$\boxed{ \mathbb{B}4.4.2(3) }$$
 極限 $\lim_{x \to -0} \left(\frac{4}{3} \right)^{\frac{1}{x}}$ について、収束するならば極限値を求め、発散するならば ∞ に発散するのか $-\infty$ に発散するのかどちらでもないのか調べよ、変数 y を $y=\frac{1}{x}$ とおく、 $x \to -0$ のとき $y=\frac{1}{x} \to x$ なので、

$$\lim_{x \to -0} \left(\frac{4}{3}\right)^{\frac{1}{x}} = \lim_{y \to \infty}$$

問4.4.2(3)極限 $\lim_{x\to 0} \left(\frac{4}{3}\right)^{\frac{1}{x}}$ について、収束するならば極限値を求め、発散す るならば ∞ に発散するのか $-\infty$ に発散するのかどちらでもないのか調べよ. 変数 y を $y=\frac{1}{x}$ とおく. $x\to -0$ のとき $y=\frac{1}{x}\to -\infty$ なので,

変数
$$y$$
 を $y=rac{1}{x}$ とあく. $x o -0$ のとき $y=rac{1}{x} o -\infty$ なので, $(4)^rac{1}{x}$ い $(4)^y$ 。

$$\lim_{x \to -0} \left(\frac{4}{3}\right)^{\frac{1}{x}} = \lim_{y \to -\infty} \left(\frac{4}{3}\right)^{y} = 0.$$