1次式の根号を含む式の積分法

7.7

ために、変数 t を $t=\sqrt{ax+b}$ とおく.

変数 x の無理式 $\sqrt{ax+b}$ (a,b は定数で $a \neq 0$) を含む式の積分する

変数
$$x$$
 の無理式 $\sqrt{ax+b}$ (a,b は定数で $a\neq 0$)を含む式の積分するために、変数 t を $t=\sqrt{ax+b}$ とおく、 $t^2=\sqrt{ax+b^2}=ax+b$ なので $x=\frac{t^2-b}{a}$;

変数
$$x$$
 の無理式 $\sqrt{ax+b}$ (a,b は定数で $a\neq 0$)を含む式の積分するために、変数 t を $t=\sqrt{ax+b}$ とおく、 $t^2=\sqrt{ax+b^2}=ax+b$ なので $x=\frac{t^2-b}{a}$;よって $\frac{dx}{dt}=\frac{d}{dt}\frac{t^2-b}{a}=\frac{2}{a}t$ なので、 $dx=\frac{2}{a}t\,dt$.

例 不定積分 $\int \frac{3}{x\sqrt{4x-9}} dx$ を計算する.

例 不定積分
$$\int \frac{3}{x\sqrt{4x-9}} dx$$
 を計算する.

変数
$$t$$
 を $t=\sqrt{4x-9}$ とおく.

例 不定積分
$$\int \frac{3}{x\sqrt{4x-9}}\,dx$$
 を計算する. 変数 t を $t=\sqrt{4x-9}$ とおく. $t^2=4x-9$ なので $x=\frac{t^2+9}{4}$.

例 不定積分 $\int \frac{3}{x\sqrt{4x-9}} dx$ を計算する. 変数 t を $t=\sqrt{4x-9}$ とおく. $t^2=4x-9$ なので $x=\frac{t^2+9}{4}$. $\frac{dx}{dt}=\frac{t}{2}$

なので $dx = \frac{t}{2}dt$.

例 不定積分 $\int \frac{3}{r\sqrt{4x-9}} dx$ を計算する. 変数 t を $t=\sqrt{4x-9}$ とおく. $t^2=4x-9$ なので $x=\frac{t^2+9}{4}$. $\frac{dx}{dt}=\frac{t}{2}$ なので $dx = \frac{t}{2}dt$. 積分定数を C とおく.

$$\int \frac{3}{x\sqrt{4x-9}} \, dx = \int \frac{3}{\frac{t^2+9}{4} \cdot t} \, \frac{t}{2} \, dt = \frac{3}{2} \int \frac{1}{t^2+9} \, dt$$

変数
$$t$$
 を $t=\sqrt{4x-9}$ とおく. $t^2=4x-9$ なので $x=\frac{t^2+9}{4}$. $\frac{dx}{dt}=\frac{t}{2}$ なので $dx=\frac{t}{2}dt$. 積分定数を C とおく.
$$\int \frac{3}{x\sqrt{4x-9}}\,dx=\int \frac{3}{t^2+9}\,\frac{t}{2}\,dt=\frac{3}{2}\int \frac{1}{t^2+9}\,dt=\frac{3}{2}\cdot\frac{1}{3}\tan^{-1}\frac{t}{3}+C$$

例 不定積分 $\int \frac{3}{r\sqrt{4x-9}} dx$ を計算する.

$$\int \frac{3}{x\sqrt{4x-9}} dx = \int \frac{3}{\frac{t^2+9}{4} \cdot t} \frac{t}{2} dt = \frac{3}{2} \int \frac{1}{t^2+9} dt = \frac{3}{2} \cdot \frac{1}{3} \tan^{-1} \frac{t}{3} + C$$

$$\int x\sqrt{4x-9}$$
 $\int \frac{t^2+9}{4} \cdot t^2$ $2\int t^2+9$ $2\cdot 3$

$$\frac{1}{4} \cdot t$$

$$=2\tan^{-1}\frac{\sqrt{4x-9}}{2}+C$$
.

$$= 2\tan^{-1}\frac{\sqrt{4x-9}}{3} + C .$$

$$=2 \tan \frac{1}{3}$$

[問7.7(1)] 不定積分 $\int \frac{3}{1+2\sqrt{3x+1}} dx$ を計算せよ. 変数 t を t= とおく. $t^2=$ なので x= . $\frac{dx}{dt}=$

なので dx = dt . 積分定数を C とおく.

$$f = 3$$

$$\int \frac{3}{1+2\sqrt{3x+1}} dx = \int dt =$$

$$ax = \int at = \int$$

$$-2\sqrt{3x+1}$$

$$2\sqrt{3x+1}$$

問7.7(1) 不定積分
$$\int \frac{3}{1+2\sqrt{3x+1}} dx$$
 を計算せよ. 変数 t を $t=\sqrt{3x+1}$ とおく. $t^2=3x+1$ なので $x=\frac{t^2-1}{3}$. $\frac{dx}{dt}=\frac{2}{3}t$ なので $dx=\frac{2}{3}tdt$. 積分定数を C とおく.
$$\int \frac{3}{1+2\sqrt{3x+1}} dx = \int dt =$$

 $\int \frac{3}{1+2\sqrt{3x+1}} dx = \int \frac{3}{1+2t} \frac{2}{3}t dt = \int \frac{2t}{1+2t} dt = \int \left(1 - \frac{1}{2t+1}\right) dt$

[問7.7(1)] 不定積分 $\int \frac{3}{1+2\sqrt{3x+1}} dx$ を計算せよ.

なので $dx = \frac{2}{3}tdt$. 積分定数を C とおく.

$$= t - \frac{1}{2} \ln|2t + 1| + C$$

$$= t - \frac{1}{2} \ln|2t + 1| + C$$

$$= \sqrt{3x + 1} - \frac{1}{2} \ln|2\sqrt{3x + 1} + 1| + C$$

変数 t を $t=\sqrt{3x+1}$ とおく. $t^2=3x+1$ なので $x=\frac{t^2-1}{2}$. $\frac{dx}{dt}=\frac{2}{2}t$

[問7.7(1)] 不定積分 $\int \frac{3}{1+2\sqrt{3x+1}} dx$ を計算せよ. 変数 t を $t=\sqrt{3x+1}$ とおく. $t^2=3x+1$ なので $x=\frac{t^2-1}{2}$. $\frac{dx}{dt}=\frac{2}{2}t$ なので $dx = \frac{2}{3}tdt$. 積分定数を C とおく. $\int \frac{3}{1+2\sqrt{3x+1}} dx = \int \frac{3}{1+2t} \frac{2}{3}t dt = \int \frac{2t}{1+2t} dt = \int \left(1 - \frac{1}{2t+1}\right) dt$ $= t - \frac{1}{2} \ln|2t + 1| + C$ $= \sqrt{3x+1} - \frac{1}{2} \ln \left| 2\sqrt{3x+1} + 1 \right| + C$

$$=\sqrt{3x+1}-\frac{1}{2}\ln\left(1+2\sqrt{3x+1}\right)+C\ .$$
 $3x+1\geq 0$ である各実数 x について, $\sqrt{3x+1}\geq 0$ なので $2\sqrt{3x+1}+1\geq 1>0$, よって $\left|2\sqrt{3x+1}+1\right|=2\sqrt{3x+1}+1$.

問7.7(1) 不定積分
$$\int \frac{3}{1+2\sqrt{3x+1}} dx$$
 を計算せよ. 変数 t を $t=\sqrt{3x+1}$ とおく. $t^2=3x+1$ なので $x=\frac{t^2-1}{3}$. $\frac{dx}{dt}=\frac{2}{3}t$ なので $dx=\frac{2}{3}tdt$. 積分定数を C とおく.
$$\int \frac{3}{1+2\sqrt{3x+1}} dx = \int \frac{3}{1+2t} \frac{2}{3}t dt = \int \frac{2t}{1+2t} dt = \int \left(1-\frac{1}{2t+1}\right) dt$$

$$= t-\frac{1}{2}\ln|2t+1| + C$$

$$= \sqrt{3x+1} - \frac{1}{2}\ln|2\sqrt{3x+1} + 1| + C$$

 $= \sqrt{3x+1} - \frac{1}{2}\ln(1+2\sqrt{3x+1}) + C.$

問
$$7.7(2)$$
 不定積分 $\int \frac{2y}{1+\sqrt{2y+1}} dy$ を計算せよ.

変数
$$x$$
 を $x=$ とおく. $x^2=$ なので $y=$.

$$rac{dy}{dx}=$$
 なので $dy=$ dx . 積分定数を C_0,C とおく.

$$\int \frac{2y}{1+\sqrt{2y+1}} \, dy = \int ---- \, dx = 0$$

$$\frac{3}{1+\sqrt{2y+1}}\,dy = \int \frac{1}{1+\sqrt{2y+1}}\,dx = 0$$

$$\frac{dy}{\sqrt{2y+1}} \, dy = \int \frac{dx}{\sqrt{2y+1}} \, dx = 0$$

$$1+\sqrt{2y+1}$$
 J

$$1+\sqrt{2y+1}$$
 J

$$J + \sqrt{2g+1}$$

$$1+\sqrt{2g+1}$$

$$+\sqrt{2y+1}$$
 by \int

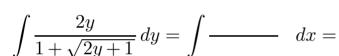
$$f + \sqrt{2y+1}$$

$$+\sqrt{2y+1}$$
 J

[問7.7(2)] 不定積分 $\int \frac{2y}{1+\sqrt{2y+1}} dy$ を計算せよ. 変数 x を $x=\sqrt{2y+1}$ とおく. $x^2=2y+1$ なので $y=\frac{x^2-1}{2}$.

$$\frac{dy}{dx} = 1$$

$$\frac{dy}{dx}=x$$
 なので $dy=xdx$. 積分定数を C_0,C とおく.



[17.7(2)] 不定積分 $\int \frac{2y}{1+\sqrt{2y+1}}\,dy$ を計算せよ. 変数 x を $x=\sqrt{2y+1}$ とおく. $x^2=2y+1$ なので $y=\frac{x^2-1}{2}$. $\frac{dy}{dx}=x$ なので $dy=x\,dx$. 積分定数を C_0 、C とおく.

 $\int \frac{2y}{1+\sqrt{2y+1}} \, dy = \int \frac{2^{\frac{x^2-1}{2}}}{1+x} x \, dx = \int \frac{x(x^2-1)}{x+1} \, dx$

[問7.7(2)] 不定積分 $\int \frac{2y}{1+\sqrt{2y+1}} dy$ を計算せよ. 変数 x を $x=\sqrt{2y+1}$ とおく. $x^2=2y+1$ なので $y=\frac{x^2-1}{2}$. $\frac{dy}{dx}=x$ なので $dy=x\,dx$. 積分定数を C_0,C とおく. $\int \frac{2y}{1+\sqrt{2y+1}} \, dy = \int \frac{2^{\frac{x^2-1}{2}}}{1+x} x \, dx = \int \frac{x(x^2-1)}{x+1} \, dx = \int \frac{x(x-1)(x+1)}{x+1} \, dx$ $= \int (x^2 - x) dx = \frac{1}{3}x^3 - \frac{1}{2}x^2 + C_0$

$$= \int (x^2 - x) dx = \frac{1}{3}x^3 - \frac{1}{2}x^2 + C_0$$
$$= \frac{1}{3}(2y + 1)\sqrt{2y + 1} - \frac{1}{2}(2y + 1) + C_0$$

$$-\frac{1}{3}(2g+1)\sqrt{2g+1} - \frac{1}{2}(2g+1) + C_0$$

$$= \frac{2g+1}{3}\sqrt{2g+1} - g - \frac{1}{2} + C_0$$
 定数 $-\frac{1}{2} + C_0$ を

 $=\frac{2y+1}{3}\sqrt{2y+1}-y+C$. C に置き換える.

[問7.7(2)] 不定積分 $\int \frac{2y}{1+\sqrt{2y+1}} dy$ を計算せよ. 変数 x を $x=\sqrt{2y+1}$ とおく. $x^2=2y+1$ なので $y=\frac{x^2-1}{2}$. $\frac{dy}{dx} = x$ なので dy = x dx. 積分定数を C_0, C とおく. $\int \frac{2y}{1+\sqrt{2y+1}} \, dy = \int \frac{2^{\frac{x^2-1}{2}}}{1+x} x \, dx = \int \frac{x(x^2-1)}{x+1} \, dx = \int \frac{x(x-1)(x+1)}{x+1} \, dx$ $= \int (x^2 - x) dx = \frac{1}{2}x^3 - \frac{1}{2}x^2 + C_0$ $=\frac{1}{3}(2y+1)\sqrt{2y+1}-\frac{1}{2}(2y+1)+C_0$ $=\frac{2y+1}{2}\sqrt{2y+1}-y-\frac{1}{2}+C_0$ $=\frac{2y+1}{2}\sqrt{2y+1}-y+C$.