関数のリーマン和

8.0

定積分の定義を復習する.

定義 実数 a と b とについて $a \le b$ で、関数 f の定義域は区間 [a,b] を含 むとする. 正の各自然数 n に対して. a =

である実数
$$x_0, x_1, x_2, x_3, \dots, x_{n-1}, x_n$$
 及び $\xi_1, \xi_2, \xi_3, \dots, \xi_n$ をとり、
$$\delta_n = \qquad \qquad ,$$

 $S_n =$ とおく. S_n を表す式を f のリーマン和という. $\lim \delta_n =$ であるどのよう

なリーマン和 S_n も $n o \infty$ のとき収束して極限値 $\lim_{n o \infty} S_n$ が関数 f 及び 実数 a,b だけから唯一つに決まるならば、関数 f は a から b まで(定)積

分可能であるといい,リーマン和 S_n の極限値 $\lim\limits_{n \to \infty} S_n$ を a から b までの f の定積分といい、 $\int_a^b f(x) dx$ と書き表す: $\int_a^b f(x) dx =$

定義 実数 a と b とについて $a \le b$ で、関数 f の定義域は区間 [a,b] を含 むとする. 正の各自然数 n に対して. $a = x_0 \le \xi_1 \le x_1 \le \xi_2 \le x_2 \le \xi_3 \le x_3 \le \dots \le x_{n-1} \le \xi_n \le x_n = b$

である実数 $x_0, x_1, x_2, x_3, \ldots, x_{n-1}, x_n$ 及び $\xi_1, \xi_2, \xi_3, \ldots, \xi_n$ をとり,

$$\delta_n = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\},$$

$$S_n = \sum_{k=1}^n \{f(\xi_k)(x_k - x_{k-1})\}$$

とおく. S_n を表す式を f のリーマン和という. $\lim \delta_n = 0$ であるどのよう なリーマン和 S_n も $n o \infty$ のとき収束して極限値 $\lim S_n$ が関数 f 及び

実数 a,b だけから唯一つに決まるならば、関数 f は a から b まで(定)積

分可能であるといい,リーマン和 S_n の極限値 $\lim_{n \to \infty} S_n$ を a から b までの f の定積分といい、 $\int_a^b f(x) dx$ と書き表す: $\int_a^b f(x) dx = \lim_{n \to \infty} S_n$.

関数
$$f$$
 が a から b まで積分可能であるとき、関数 f は b から a まで積分可能であるといい、 f の b から a までの定積分 $\int_b^a f(x) \, dx$ を次のように定義する: $\int_b^a f(x) \, dx = -\int_a^b f(x) \, dx$.

実数
$$a$$
 と b とについて $a \le b$ で,関数 f の定義域は区間 $[a,b]$ を含み, f は a から b まで定積分可能であるとする.正の各自然数 n に対して,
$$a=x_0 \le x_1 \le x_2 \le x_3 \le \cdots \le x_{n-1} \le x_n = b$$
 である実数 $x_0, x_1, x_2, x_3, \ldots, x_{n-1}, x_n$ をとる.
$$\delta_n = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \ldots, x_n - x_{n-1}\}$$

について $\lim \delta_n = 0$ とする.

f は a から b まで定積分可能であるとする. 正の各自然数 n に対して. $a = x_0 < x_1 < x_2 < x_3 < \dots < x_{n-1} < x_n = b$

である実数
$$x_0, x_1, x_2, x_3, \dots, x_{n-1}, x_n$$
 をとる.
$$\delta_n = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}$$

実数 a と b とについて $a \leq b$ で、関数 f の定義域は区間 [a,b] を含み、

$$\delta_n=\max\{x_1-x_0,x_2-x_1,x_3-x_2,\ldots,x_n-x_{n-1}\}$$
について $\lim_{n o\infty}\delta_n=0$ とする.定積分の定義より, $k=1,2,3,\ldots,n$ に対

して, $x_{k-1} \le \xi_k \le x_k$ である実数 ξ_k をどのように定めてもリーマン和

 $S_n = \sum_{k=0}^{\infty} \{f(\xi_k)(x_k - x_{k-1})\}$ の極限値 $\lim_{n \to \infty} S_n$ は変わない.

関数 f が a から b まで定積分可能であるとき,定積分の定義より, k=1, $2,3,\ldots,n$ に対して, $x_{k-1}\leq \xi_k\leq x_k$ である実数 ξ_k をどのように定めても リーマン和 $S_n=\sum\limits_{k=1}^n\{f(\xi_k)\,(x_k-x_{k-1})\}$ の極限値 $\lim\limits_{n\to\infty}S_n$ は変わらない.

 $2,3,\ldots,n$ に対して、 $x_{k-1} \leq \xi_k \leq x_k$ である実数 ξ_k をどのように定めても リーマン和 $S_n=\sum\limits_{k=1}^n \left\{f(\xi_k)\left(x_k-x_{k-1}\right)
ight\}$ の極限値 $\lim\limits_{n o\infty}S_n$ は変わらない. そ こで、 $\xi_k = x_k$ (k = 1, 2, 3, ..., n) とすると、リーマン和 S_n は

関数 f が a から b まで定積分可能であるとき、定積分の定義より、 k=1

 $S_n = \sum_{k=1}^n \{ f(\xi_k) (x_k - x_{k-1}) \} = \sum_{k=1}^n \{ f(x_k) (x_k - x_{k-1}) \}$.

 $2,3,\ldots,n$ に対して、 $x_{k-1} \leq \xi_k \leq x_k$ である実数 ξ_k をどのように定めても リーマン和 $S_n=\sum\limits_{k=0}^n \{f(\xi_k)(x_k-x_{k-1})\}$ の極限値 $\lim\limits_{n o\infty}S_n$ は変わらない. そ こで、 $\xi_k=x_k$ ($k=1,2,3,\ldots,n$) とすると、リーマン和 S_n は

 $S_n = \sum_{k=1}^n \{ f(\xi_k) (x_k - x_{k-1}) \} = \sum_{k=1}^n \{ f(x_k) (x_k - x_{k-1}) \}$.

関数 f が a から b まで定積分可能であるとき、定積分の定義より、 k=1、

$$S_n = \sum_{k=1}^n \{ J(\zeta_k)(x_k - x_{k-1}) \} = \sum_{k=1}^n \{ J(x_k)(x_k - x_{k-1}) \}$$
 . た別に、 $\xi_k = x_{k-1}$ ($k=1,2,3,\ldots,n$)とすると、リーマン和 S_n は

また別に、 $\xi_k=x_{k-1}$ ($k=1,2,3,\ldots,n$) とすると、リーマン和 S_n は

 $S_n = \sum_{k=1}^n \{f(\xi_k)(x_k - x_{k-1})\} = \sum_{k=1}^n \{f(x_{k-1})(x_k - x_{k-1})\}$.

 $2,3,\ldots,n$ に対して、 $x_{k-1} \leq \xi_k \leq x_k$ である実数 ξ_k をどのように定めても リーマン和 $S_n=\sum\limits_{k=1}^n \{f(\xi_k)(x_k-x_{k-1})\}$ の極限値 $\lim\limits_{n o\infty}S_n$ は変わらない. そ こで、 $\xi_k=x_k$ ($k=1,2,3,\ldots,n$) とすると、リーマン和 S_n は $S_n = \sum_{k=1}^n \{ f(\xi_k) (x_k - x_{k-1}) \} = \sum_{k=1}^n \{ f(x_k) (x_k - x_{k-1}) \}$.

関数 f が a から b まで定積分可能であるとき、定積分の定義より、 k=1、

また別に、
$$\xi_k=x_{k-1}$$
 $(k=1,2,3,\ldots,n)$ とすると、リーマン和 S_n は

$$S_n = \sum_{k=1}^n \{ f(\xi_k) (x_k - x_{k-1}) \} = \sum_{k=1}^n \{ f(x_{k-1}) (x_k - x_{k-1}) \} .$$

f のリーマン和として $\sum\limits_{k=1}^n \{f(x_k)(x_k-x_{k-1})\}$ 或いは $\sum\limits_{k=1}^n \{f(x_{k-1})(x_k-x_{k-1})\}$

をしばしばを用いる.