4.2 関数の極限の性質

変数 x の関数 f(x) について、どんな実数 K に対しても x>K である f の定義域の実数 x があり、 f の定義域の実数を表す変数 x の値を限りなく大きくしていくと f の値 f(x) が唯一つの定数 c に限りなく近づく とき、x の値を限りなく大きくすると f(x) は c に収束する、または、

 $x \to \infty$ のとき f(x) は c に収束するといい, c を f(x) の極限(値)という.

変数 x の関数 f(x) について、どんな実数 K に対しても x > K である f の定義域の実数 x があり. f の定義域の実数を表す変数 x の値を限りなく大きくしていくと

f の値 f(x) が唯一つの定数 c に限りなく近づく

とき、
$$x$$
 の値を限りなく大きくすると $f(x)$ は c に収束する、または、 $x \to \infty$ のとき $f(x)$ は c に収束するといい、 c を $f(x)$ の極限(値)という

 $x \to \infty$ のとき f(x) は c に収束するといい, c を f(x) の極限(値)という.

 $\lim_{x \to \infty} f(x) = c .$

$$x o\infty$$
 のとき $f(x)$ は c に収束するといい, c を $f(x)$ の極限(値)という $x o\infty$ のときの $f(x)$ の極限値を $\lim_{x o\infty}f(x)$ と書き表す:

変数 x の関数 f(x) について、どんな実数 K に対しても x > K である f の定義域の実数 x があり. f の定義域の実数を表す変数 x の値を限りなく大きくしていくと

f の値 f(x) が唯一つの定数 c に限りなく近づく とき, x の値を限りなく大きくすると f(x) は c に収束する, または,

 $x \to \infty$ のとき f(x) は c に収束するといい, c を f(x) の極限(値)という.

 $x \to \infty$ のときの f(x) の極限値を $\lim_{x \to \infty} f(x)$ と書き表す:

 $\lim_{x \to \infty} f(x) = c .$

関数 f について、 $x \to \infty$ のとき f(x) がどんな実数にも収束しないとき、

f(x) は発散するという.

f の定義域の実数 x があるとする.

変数 x の関数 f(x) について、どんな実数 K に対しても x>K である

変数 x の関数 f(x) について、どんな実数 K に対しても x > K である f の定義域の実数 x があるとする.

変数 x の関数 f(x) について、変数 x の値を限りなく大きくしていくと f(x) の値も限りなく大きくなるとき、 $x \to \infty$ のとき f(x) は ∞ に発散する

 $\lim_{x \to \infty} f(x) = \infty$

f の定義域の実数 x があるとする. 変数 x の関数 f(x) について,変数 x の値を限りなく大きくしていくと

f(x) の値も限りなく大きくなるとき, $x \to \infty$ のとき f(x) は ∞ に発散する

変数 x の関数 f(x) について、どんな実数 K に対しても x > K である

 $\lim_{x \to \infty} f(x) = \infty$

$$\lim_{x \to \infty} f(x) = \infty$$

と書き表す.

といい.

変数 x の関数 f(x) について,変数 x の値を限りなく大きくしていくと,

f(x) < 0 でその絶対値 |f(x)| が限りなく大きくなるとき、 $x \to \infty$ のとき

f(x) は $-\infty$ に発散するといい,

 $\lim_{x \to \infty} f(x) = -\infty$

$$\lim_{x \to \infty} f(x)$$

と書き表す.

変数 x の関数 f(x) について、どんな実数 K に対しても x < K である f の定義域の実数 x があり、 f の定義域の実数を表す変数 x について $x \to -\infty$ とすると f の値 f(x) が唯一つの定数 c に限りなく近づく

とき, $x \to -\infty$ のとき f(x) は c に収束するといい, c を f(x) の極限(値)

という.

変数 x の関数 f(x) について、どんな実数 K に対しても x < K である f の定義域の実数 x があり.

f の値 f(x) が唯一つの定数 c に限りなく近づく

f の定義域の実数を表す変数 x について $x
ightarrow -\infty$ とすると

とき,
$$x\to -\infty$$
 のとき $f(x)$ は c に収束するといい, c を $f(x)$ の極限 (値) という. $x\to -\infty$ のときの $f(x)$ の極限値を $\lim_{x\to +\infty} f(x)$ と書き表す:

という.
$$x\to -\infty$$
 のときの $f(x)$ の極限値を $\lim_{x\to -\infty} f(x)$ と書き表す:
$$\lim_{x\to -\infty} f(x) = c \ .$$

f の定義域の実数 x があり. f の定義域の実数を表す変数 x について $x
ightarrow -\infty$ とすると

変数 x の関数 f(x) について、どんな実数 K に対しても x < K である

f の値 f(x) が唯一つの定数 c に限りなく近づく とき, $x \to -\infty$ のとき f(x) は c に収束するといい, c を f(x) の極限(値)

という. $x \to -\infty$ のときの f(x) の極限値を $\lim_{x \to -\infty} f(x)$ と書き表す:

いう.
$$x \to -\infty$$
 のときの $f(x)$ の極限値を $\lim_{x \to -\infty} f(x)$ と書き表す:
$$\lim_{x \to -\infty} f(x) = c \ .$$

 $\lim_{x \to -\infty} f(x) = c .$

関数 f について, $x \to -\infty$ のとき f(x) がどんな実数にも収束しないとき,

f(x) は発散するという.

f の定義域の実数 x があるとする.

変数 x の関数 f(x) について、どんな実数 K に対しても x < K である

変数 x の関数 f(x) について、どんな実数 K に対しても x < K である f の定義域の実数 x があるとする. 変数 x の関数 f(x) について, $x \to -\infty$ とすると f(x) の値が限りなく大

きくなるとき,
$$x \to -\infty$$
 のとき $f(x)$ は ∞ に発散するといい,

と書き表す.

$$\lim_{x \to -\infty} f(x) = \infty$$

f の定義域の実数 x があるとする. 変数 x の関数 f(x) について, $x \to -\infty$ とすると f(x) の値が限りなく大

変数 x の関数 f(x) について、どんな実数 K に対しても x < K である

きくなるとき, $x \to -\infty$ のとき f(x) は ∞ に発散するといい, $\lim_{x \to -\infty} f(x) = \infty$

と書き表す.

変数 x の関数 f(x) について, $x \to -\infty$ とすると f(x) < 0 でその絶対値

|f(x)| が限りなく大きくなるとき, $x o -\infty$ のとき f(x) は $-\infty$ に発散す

るといい.

 $\lim_{x \to -\infty} f(x) = -\infty$

と書き表す.

のとき関数
$$f(x)$$
 と $g(x)$ とが収束するならば,
$$\lim_{x\to a}\{f(x)\pm g(x)\}=\left\{\lim_{x\to a}f(x)\right\}\pm\left\{\lim_{x\to a}g(x)\right\}\quad (複号同順)\quad ,$$

$$\lim_{x \to a} \{f(x)g(x)\} = \left\{ \lim_{x \to a} f(x) \right\} \left\{ \lim_{x \to a} g(x) \right\} ;$$

定理 定数 a は実数または ∞ または $-\infty$ とする. 変数 x について $x \rightarrow a$

$$x \to a$$
 のとき $f(x)$ と $g(x)$ とが収束して $\lim_{x \to a} g(x) \neq 0$ ならば,

$$ightarrow a$$
 のとき $f(x)$ と $g(x)$ とか収集して $\lim_{x o a} g(x)
eq 0$ ならは、 $\lim_{x o a} f(x)$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} g(x)} .$$

$$\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{\lim_{x \to a} g(x)}.$$

$$x \to a \ g(x)$$
 $\lim_{x \to a} g(x)$

$$x \rightarrow a$$

定理 定数
$$a$$
 は実数または ∞ または $-\infty$ とする. 変数 x について $x \to a$ のとき関数 $f(x)$ と $g(x)$ とが収束するならば,
$$\lim_{x\to a}\{f(x)\pm g(x)\}=\left\{\lim_{x\to a}f(x)\right\}\pm\left\{\lim_{x\to a}g(x)\right\}\quad (複号同順)\quad,$$

 $\lim_{x \to \infty} \{ f(x)g(x) \} = \left\{ \lim_{x \to \infty} f(x) \right\} \left\{ \lim_{x \to \infty} g(x) \right\} ;$

$$x o a$$
 のとき $f(x)$ と $g(x)$ とが収束して $\lim_{x o a}g(x)
eq 0$ ならば,
$$\lim_{x o a}rac{f(x)}{g(x)}=rac{\lim_{x o a}f(x)}{\lim g(x)}\;.$$

次のことがいえる:変数 x と無関係な定数 k について, $\lim k = k$ なの

のことがいえる:変数
$$x$$
 と無関係な定数 k について, $\lim\limits_{x o\infty}k=k$ なの関数 $f(x)$ について $x o\infty$ のとき $f(x)$ が収束するならば,

で、関数 f(x) について $x \to \infty$ のとき f(x) が収束するならば、

$$\lim_{x \to \infty} \{f(x) + k\} = \left\{ \lim_{x \to \infty} f(x) \right\} + \lim_{x \to \infty} k = \left\{ \lim_{x \to \infty} f(x) \right\} + k ,$$

$$\lim_{x \to \infty} \{k f(x)\} = \left(\lim_{x \to \infty} k \right) \lim_{x \to \infty} f(x) = k \lim_{x \to \infty} f(x) .$$

定理 関数 f(x) と関数 g(x) との合成関数 $g\big(f(x)\big)$ があるとする.定数 a は実数または ∞ または $-\infty$ とする.変数 x について $x \to a$ のとき f(x) は収束してかつ極限値 $\lim_{x \to a} f(x)$ において関数 g が連続であるならば,

 $\lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)).$

は実数または ∞ または $-\infty$ とする. 変数 x について $x \to a$ のとき f(x)は収束してかつ極限値 $\lim_{x \to a} f(x)$ において関数 g が連続であるならば,

$$\lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right) .$$

定理 関数 f(x) と関数 g(x) との合成関数 g(f(x)) があるとする. 定数 a

定理 定数 a と b とは実数または ∞ または $-\infty$ とする. 変数 x の関数

$$f(x)$$
 と変数 y の関数 $g(y)$ とについて、 $f(x) = g(y)$ で、 $x \to a$ のとき $y \to b$ 、 $y \neq b$ とする、 $y \to b$ のとき $g(y)$ が収束するならば

$$ightarrow b$$
 , $y
eq b$ とする. $y
ightarrow b$ のとき $g(y)$ が収束するならば,

$$y o b$$
 , $y
eq b$ とする. $y o b$ のとき $g(y)$ が収束するならば.

$$y \mapsto 0$$
 , $y \neq 0$ 29 3. $y \mapsto 0$ 022 $y(y)$ Maxy 34514,

$$\lim f(x) = \lim g(y)$$
.

$$\lim_{x \to a} f(x) = \lim_{x \to b} g(y) .$$

関数
$$f$$
 について $\lim_{x\to a}f(x)=\infty$ とする. $y=f(x)$ とおくと, $x\to a$ のとき $y\to\infty$; よって, 定数 k に対して,

$$\lim_{x \to a} \frac{k}{f(x)} = \lim_{y \to \infty} \frac{k}{y} = k \lim_{y \to \infty} y^{-1} = k \cdot 0 = 0.$$

き
$$y \to \infty$$
 ; よって、定数 k に対して,
$$\lim_{x \to a} \frac{k}{f(x)} = \lim_{y \to \infty} \frac{k}{y} = k \lim_{y \to \infty} y^{-1} = k \cdot 0 = 0 \ .$$

関数 f について $\lim f(x) = \infty$ とする. y = f(x) とおくと, $x \to a$ のと

関数
$$f$$
 について $\lim_{x \to a} f(x) = -\infty$ とする. $y = -f(x)$ とおくと,

f(x)=-y , x o a のとき $f(x) o -\infty$ なので $y=-f(x) o \infty$; よって.

- $\lim_{x \to a} \frac{k}{f(x)} = \lim_{y \to \infty} \frac{k}{-y} = -k \lim_{y \to \infty} y^{-1} = -k \cdot 0 = 0.$

例 変数 x の関数 $\sqrt{9+rac{5}{x^2}}$ について, $x o\infty$ のときの極限を調べる.

例 変数
$$x$$
 の関数 $\sqrt{9+\frac{5}{x^2}}$ について, $x\to\infty$ のときの極限を調べる.
$$\lim_{x\to\infty}\frac{5}{x^2}=\lim_{x\to\infty}(5x^{-2})=0 \ \text{ t oot},$$

$$\lim_{x\to\infty}\left(9+\frac{5}{x^2}\right)=9+\lim_{x\to\infty}\frac{5}{x^2}=9+0=9 \ .$$

 $rac{@}{}$ 変数 x の関数 $\sqrt{9+rac{5}{x^2}}$ について, $x o\infty$ のときの極限を調べる. $\lim_{x \to \infty} \frac{5}{x^2} = \lim_{x \to \infty} (5x^{-2}) = 0$ toc,

$$\lim_{x\to\infty}\left(9+\frac{5}{x^2}\right)=9+\lim_{x\to\infty}\frac{5}{x^2}=9+0=9\ .$$
 9 において関数 \sqrt{x} は連続なので、

 $\lim_{x \to \infty} \sqrt{9 + \frac{5}{x^2}} = \sqrt{\lim_{x \to \infty} \left(9 + \frac{5}{x^2}\right)}$ 関数 f(x) と関数 g(x) との合成関数 g(f(x)) があるとする. 定数 aは実数か ∞ か $-\infty$ とする. 変数 x について $x \to a$ のとき f(x) が 収束してかつ極限値 $\lim f(x)$ において関数 g が連続であるならば、 $\lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)).$

例 変数
$$x$$
 の関数 $\sqrt{9+\frac{5}{x^2}}$ について, $x\to\infty$ のときの極限を調べる.
$$\lim_{x\to\infty}\frac{5}{x^2}=\lim_{x\to\infty}(5x^{-2})=0 \quad \text{なので,}$$

$$\lim_{x\to\infty}\left(9+\frac{5}{x^2}\right)=9+\lim_{x\to\infty}\frac{5}{x^2}=9+0=9 \ .$$

終

9 において関数 \sqrt{x} は連続なので、

 $\lim_{x \to \infty} \sqrt{9 + \frac{5}{x^2}} = \sqrt{\lim_{x \to \infty} \left(9 + \frac{5}{x^2}\right)} = \sqrt{9} = 3.$

問
$$4.2.1$$
 変数 x の関数 $\log_3\!\left(81+\frac{7}{\sqrt{x}}\right)$ について, $x\to\infty$ のときの極限を調べよ.
$$\lim_{x\to\infty}\frac{7}{\sqrt{x}}=\lim_{x\to\infty}\left(7x^{-\frac{1}{2}}\right)=\quad$$
なので,

$$\lim_{x \to \infty} \left(81 + \frac{7}{\sqrt{x}} \right) = 81 + \quad = \quad .$$

において関数
$$\log_3 x$$
 は連続なので、

$$\lim_{n \to \infty} \log_2 \left\{ 81 + \frac{7}{2} \right\} = \log_2 \left\{ \lim_{n \to \infty} \left\{ 81 + \frac{7}{2} \right\} \right\}$$

$$\lim_{x \to \infty} \log_3 \left(81 + \frac{7}{\sqrt{x}} \right) = \log_3 \left\{ \lim_{x \to \infty} \left(81 + \frac{7}{\sqrt{x}} \right) \right\} =$$

$$\lim_{t \to \infty} \log_3 \left(81 + \frac{1}{\sqrt{x}} \right) = \log_3 \left(\lim_{x \to \infty} \left(81 + \frac{1}{\sqrt{x}} \right) \right)$$

$$\rightarrow \infty \qquad (x \rightarrow \infty) \qquad (x \rightarrow \infty)$$

$$x \to \infty$$
 $(x \to \infty)$ $(x \to \infty)$

問
$$4.2.1$$
 変数 x の関数 $\log_3\!\left(81+\frac{7}{\sqrt{x}}\right)$ について, $x\to\infty$ のときの極限を調べよ.
$$\lim_{x\to\infty}\frac{7}{\sqrt{x}}=\lim_{x\to\infty}\left(7x^{-\frac{1}{2}}\right)=0 \quad \text{なので},$$

 $\lim_{x \to \infty} \log_3 \left(81 + \frac{7}{\sqrt{x}} \right) = \log_3 \left\{ \lim_{x \to \infty} \left(81 + \frac{7}{\sqrt{x}} \right) \right\} =$

81 において関数 $\log_3 x$ は連続なので、

 $\lim_{x \to \infty} \left(81 + \frac{7}{\sqrt{x}} \right) = 81 + 0 = 81 \ .$

問
$$4.2.1$$
 変数 x の関数 $\log_3\!\left(81+\frac{7}{\sqrt{x}}\right)$ について, $x\to\infty$ のときの極限を調べよ.
$$\lim_{x\to\infty}\frac{7}{\sqrt{x}}=\lim_{x\to\infty}\left(7x^{-\frac{1}{2}}\right)=0 \quad \text{なので},$$

$$\lim_{x \to \infty} \frac{\dot{}}{\sqrt{x}} = \lim_{x \to \infty} \left(7x^{-\frac{1}{2}}\right) = 0 \quad \text{for},$$

$$\lim_{x \to \infty} \left(81 + \frac{7}{2}\right) = 81 + 0 = 81$$

$$\lim_{x\to\infty}\left(81+\frac{7}{\sqrt{x}}\right)=81+0=81 \ .$$

$$x o \infty$$
 \sqrt{x} \sqrt{x} 81 において関数 $\log_3 x$ は連続なので、

において関数
$$\log_3 x$$
 は連続なので、

$$81$$
 において関数 $\log_3 x$ は連続なので, $\lim_{x o\infty}\log_3\Bigl(81+rac{7}{\sqrt{x}}\Bigr)=\log_3\Bigl\{\lim_{x o\infty}\Bigl(81+rac{7}{\sqrt{x}}\Bigr)\Bigr\}=\log_3 81=\log_3 3^4$

において関数
$$\log_3 x$$
 は連続なので、

例 変数 x の関数 $\left(\frac{4}{3}\right)^{2x-5}$ について, $x \to \infty$ のとき及び $x \to -\infty$ のときの極限を調べる.

の極限を調べる. 変数
$$y$$
 を $y=2x-5$ とおく. $\left(\frac{4}{3}\right)^{2x-5}=\left(\frac{4}{3}\right)^{y}$.

 $rac{|M|}{2}$ 変数 x の関数 $\left(rac{4}{3}
ight)^{2x-5}$ について, $x o\infty$ のとき及び $x o-\infty$ のとき

の極限を調べる. 変数
$$y$$
 を $y=2x-5$ とおく. $\left(\frac{4}{3}\right)^{2x-5}=\left(\frac{4}{3}\right)^y$. $x\to\infty$ のとき $y=2x-5\to\infty$ なので、

 $rac{|M|}{2}$ 変数 x の関数 $\left(rac{4}{3}
ight)^{2x-5}$ について, $x o\infty$ のとき及び $x o-\infty$ のとき

$$\lim_{x\to\infty}\left(\frac{4}{3}\right)^{2x-5}=\lim_{y\to\infty}\left(\frac{4}{3}\right)^y=\infty\ .$$
定数 a と b とは実数または ∞ または $-\infty$ とする. 変数 x の関数 $f(x)$

定数
$$a$$
 と b とは美数または ∞ または $-\infty$ とする. 変数 x の関数 $f(x)$ と変数 y の関数 $g(y)$ とについて, $f(x)=g(y)$ で, $x\to a$ のとき $y\to b$, $y\neq b$ とする. $y\to b$ のとき $g(y)$ が収束するならば, $\lim_{x\to a}f(x)=\lim_{y\to b}g(y)$.

例 変数
$$x$$
 の関数 $\left(\frac{4}{3}\right)^{2x-5}$ について、 $x \to \infty$ のとき及び $x \to -\infty$ のときの極限を調べる。変数 y を $y=2x-5$ とおく。 $\left(\frac{4}{3}\right)^{2x-5}=\left(\frac{4}{3}\right)^y$. $x \to \infty$ のとき $y=2x-5 \to \infty$ なので,
$$\lim_{x \to \infty} \left(\frac{4}{3}\right)^{2x-5}=\lim_{y \to \infty} \left(\frac{4}{3}\right)^y=\infty \ .$$

 $x \to -\infty$ のとき $y = 2x - 5 \to -\infty$ なので, $\lim_{x \to -\infty} \left(\frac{4}{3}\right)^{2x-5} = \lim_{y \to -\infty} \left(\frac{4}{3}\right)^{y} = 0.$

定数 a と b とは実数または ∞ または $-\infty$ とする. 変数 x の関数 f(x)と変数 y の関数 g(y) とについて、f(x) = g(y) で、 $x \to a$ のとき $y \to b$ 、

定数
$$a$$
 と b とは美数または ∞ または $-\infty$ とする. 変数 x の関数 $f(x)$ 変数 y の関数 $g(y)$ とについて, $f(x)=g(y)$ で, $x o a$ のとき $y o b$

 $y \neq b$ とする. $y \rightarrow b$ のとき g(y) が収束するならば, $\lim_{x \rightarrow a} f(x) = \lim_{y \rightarrow b} g(y)$.

の極限を調べる. 変数
$$y$$
 を $y=2x-5$ とおく. $\left(\frac{4}{3}\right)^{2x-5}=\left(\frac{4}{3}\right)^y$. $x\to\infty$ のとき $y=2x-5\to\infty$ なので,
$$\lim_{x\to\infty}\left(\frac{4}{3}\right)^{2x-5}=\lim_{y\to\infty}\left(\frac{4}{3}\right)^y=\infty\ .$$

$$\lim_{x o\infty}\left(\overline{3}\right)=\lim_{y o\infty}\left(\overline{3}\right)=\infty$$
 . $-\infty$ のとき $y=2x-5 o-\infty$ なので,

$$x o -\infty$$
 のとき $y = 2x - 5 o -\infty$ なので、 $(4)^{y}$

 $rac{|M|}{2}$ 変数 x の関数 $\left(rac{4}{3}
ight)^{2x-5}$ について, $x o\infty$ のとき及び $x o-\infty$ のとき

$$\lim_{y \to 0} \left(\frac{4}{2}\right)^{2x-5} = \lim_{y \to 0} \left(\frac{4}{2}\right)^{y} = 0.$$

$$\lim_{x \to -\infty} \left(\frac{4}{3}\right)^{2x-5} = \lim_{y \to -\infty} \left(\frac{4}{3}\right)^y = 0.$$

$$\lim_{x \to -\infty} \left(\frac{4}{3}\right) = \lim_{y \to -\infty} \left(\frac{4}{3}\right) = 0.$$

$$\lim_{x \to -\infty} (3) \qquad \lim_{y \to -\infty} (3) = 0$$

$$x \to -\infty$$
 (3) $y \to -\infty$ (3)

問
$$4.2.2$$
 変数 x の関数 $\left(\frac{5}{6}\right)^{3x-7}$ について, $x\to\infty$ のときの及び $x\to-\infty$ のときの極限を調べよ. 変数 y を $y=3x-7$ とおく. $x\to\infty$ のとき $y\to$ なので.

変数
$$y$$
 を $y=3x-7$ とおく. $x \to \infty$ のとき $y \to x$ なので、

$$\lim_{x \to \infty} \left(\frac{5}{6}\right)^{3x-7} = \lim_{y \to \infty} \left(\frac{5}{6}\right)^y = .$$

$$\lim_{x \to \infty} \left(\frac{5}{6}\right)^{3x-t} = \lim_{y \to \infty} \left(\frac{5}{6}\right)^y = .$$

$$\lim_{x o\infty}\left(\overline{_6}\right)=\lim_{y o}\left(\overline{_6}\right)=\dots$$

$$x o -\infty$$
 のとき $y o$ なので、

$$c o -\infty$$
 のとき $y o$ なので、 $(5)^{3x-7}$ $(5)^y$

$$\lim_{y \to \infty} \left(\frac{5}{2} \right)^{3x-7} = \lim_{y \to \infty} \left(\frac{5}{2} \right)^{y} = .$$

 $\lim_{x \to \infty} \left(\frac{5}{6}\right)^{3x-7} = \lim_{x \to \infty} \left(\frac{5}{6}\right)^y = \dots$

$$\lim_{x \to -\infty} \left(\frac{3}{6} \right)^{x} = \lim_{y \to \infty} \left(\frac{3}{6} \right)^{3} = .$$

$$\lim_{x \to -\infty} (6) \qquad \lim_{y \to \infty} (6) \qquad .$$

$$\lim_{x \to \infty} \left(\frac{5}{6}\right)^{3x-7} = \lim_{y \to \infty} \left(\frac{5}{6}\right)^y = 0.$$

$$\lim_{x o\infty}\left(\overline{_6}
ight) = \lim_{y o\infty}\left(\overline{_6}
ight) = 0$$
 . ∞ のとき $y o-\infty$ なので、

終

$$x o -\infty$$
 のとき $y o -\infty$ なので, $\lim_{x\to -\infty}\left(rac{5}{2}
ight)^{3x-7}=\lim_{x\to -\infty}\left(rac{5}{2}
ight)^y=\infty$.

$$\lim_{x \to -\infty} \left(\frac{5}{6}\right)^{3x-7} = \lim_{y \to -\infty} \left(\frac{5}{6}\right)^y = \infty.$$

$$\lim_{x \to -\infty} \left(\frac{5}{6}\right)^{3x-7} = \lim_{y \to -\infty} \left(\frac{5}{6}\right)^y = \infty.$$

$$\lim_{x \to -\infty} \left(\frac{5}{6}\right)^{3x-7} = \lim_{y \to -\infty} \left(\frac{5}{6}\right)^y = \infty.$$

$$\lim_{x \to -\infty} \left(\frac{3}{6} \right) = \lim_{y \to -\infty} \left(\frac{3}{6} \right)^{s} = \infty.$$

問
$$4.2.3$$
 変数 y の関数 $\left(\frac{8}{7}\right)^{5-2y}$ について、 $y\to\infty$ のとき及び $y\to-\infty$ のときの極限を調べよ. 変数 x を $x=5-2y$ とおく、 $y\to\infty$ のとき $x\to$ なので、

 $\lim_{y \to \infty} \left(\frac{8}{7}\right)^{5-2y} = \lim_{x \to \infty} \left(\frac{8}{7}\right)^x = .$

$$y o -\infty$$
 のとき $x o$ なので、

$$x-\infty$$
 のとき $x o$ なので、 $\lim_{x\to\infty}\left(rac{8}{2}
ight)^{5-2y}-\lim_{x\to\infty}\left(rac{8}{2}
ight)^x-$

$$\lim \left(\frac{8}{7}\right)^{5-2y} = \lim \left(\frac{8}{7}\right)^x = .$$

$$\lim_{y \to -\infty} \left(\frac{8}{7}\right)^{5-2y} = \lim_{x \to \infty} \left(\frac{8}{7}\right)^x = .$$

$$\lim_{y \to -\infty} \left(\frac{\Im}{7} \right) = \lim_{x \to \infty} \left(\frac{\Im}{7} \right) = .$$

$$\lim_{y \to -\infty} \left(\overline{7}\right) \qquad -\lim_{x \to \infty} \left(\overline{7}\right) \qquad .$$

問
$$4.2.3$$
 変数 y の関数 $\left(\frac{8}{7}\right)^{5-2y}$ について、 $y\to\infty$ のとき及び $y\to-\infty$ のときの極限を調べよ. 変数 x を $x=5-2y$ とおく、 $y\to\infty$ のとき $x\to-\infty$ なので、

$$\lim_{y \to \infty} \left(\frac{8}{7}\right)^{5-2y} = \lim_{x \to -\infty} \left(\frac{8}{7}\right)^x = 0.$$

$$\lim_{y o\infty}\left(\overline{7}\right)=\lim_{x o-\infty}\left(\overline{7}\right)=0$$
 . $o-\infty$ のとき $x o\infty$ なので,

$$y \to -\infty$$
 のとき $x \to \infty$ なので, $\lim_{x \to \infty} \left(\frac{8}{\pi}\right)^{5-2y} = \lim_{x \to \infty} \left(\frac{8}{\pi}\right)^x = \infty$.

$$\lim_{y \to -\infty} \left(\frac{8}{7}\right)^{5-2y} = \lim_{x \to \infty} \left(\frac{8}{7}\right)^x = \infty.$$

$$\lim_{y \to -\infty} \left(\frac{8}{7}\right)^{3-2y} = \lim_{x \to \infty} \left(\frac{8}{7}\right)^x = \infty.$$

$$\lim_{y \to -\infty} \left(\frac{\sigma}{7}\right) = \lim_{x \to \infty} \left(\frac{\sigma}{7}\right) = \infty.$$

$$y \to -\infty \setminus \mathcal{T}$$
 $x \to \infty \setminus \mathcal{T}$

 $rac{@}{}$ 変数 t の関数 $\sin\left(rac{ an^{-1}t}{3}
ight)$ について, $t o\infty$ のとき及び $t o-\infty$ のと きの極限を調べる.

例 変数
$$t$$
 の関数 $\sin\left(\frac{\tan^{-1}t}{3}\right)$ について、 $t\to\infty$ のとき及び $t\to-\infty$ のときの極限を調べる. $\lim_{t\to\infty} \tan^{-1}t = \frac{\pi}{2}$ なので
$$\frac{y}{2}$$
 $y = \tan^{-1}x$

きの極限を調べる.
$$\lim_{t \to \infty} an^{-1}t = \frac{\pi}{2}$$
 なので $\lim_{t \to \infty} an^{-1}t$ 1 $\lim_{t \to \infty} an^{-1}t$ 1 $\lim_{t \to \infty} an^{-1}t$ 1 $\lim_{t \to \infty} an^{-1}t$ 2

$$\lim_{t \to \infty} \frac{\tan^{-1} t}{3} = \frac{1}{3} \lim_{t \to \infty} \tan^{-1} t = \frac{1}{3} \cdot \frac{\pi}{2} = \frac{\pi}{6} .$$

$t{ ightarrow}\infty$	3	$3 t \rightarrow \infty$	3	2	0

 $rac{|m{M}|}{2}$ 変数 t の関数 $\sin\left(rac{ an^{-1}t}{3}
ight)$ について, $t o\infty$ のとき及び $t o-\infty$ のと

きの極限を調べる.
$$\lim_{t \to \infty} \tan^{-1} t = \frac{\pi}{2}$$
 なので $\lim_{t \to \infty} \frac{\tan^{-1} t}{3} = \frac{1}{3} \lim_{t \to \infty} \tan^{-1} t = \frac{1}{3} \cdot \frac{\pi}{2} = \frac{\pi}{6}$.

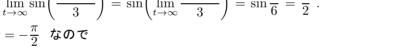
 $rac{|m{M}|}{2}$ 変数 t の関数 $\sin\left(rac{ an^{-1}t}{3}
ight)$ について, $t o\infty$ のとき及び $t o-\infty$ のと

 $\lim_{t \to \infty} \sin\left(\frac{\tan^{-1}t}{3}\right) = \sin\left(\lim_{t \to \infty} \frac{\tan^{-1}t}{3}\right) = \sin\frac{\pi}{6} = \frac{1}{2}.$

 $\frac{\pi}{6}$ において正弦関数 $\sin x$ は連続なので,

きの極限を調べる.
$$\lim_{t\to\infty}\tan^{-1}t=\frac{\pi}{2}\quad\text{t}$$
 $\text{$t$}$ $\text{$

 $rac{|m{M}|}{2}$ 変数 t の関数 $\sin\left(rac{ an^{-1}t}{3}
ight)$ について, $t o\infty$ のとき及び $t o-\infty$ のと



 $y = \tan^{-1} x$

例 変数
$$t$$
 の関数 $\sin\left(\frac{\tan^{-1}t}{3}\right)$ について, $t\to\infty$ のとき及び $t\to-\infty$ のときの極限を調べる. $\lim_{t\to\infty}\tan^{-1}t=\frac{\pi}{2}$ なので

 $\lim_{t \to \infty} \frac{\tan^{-1} t}{3} = \frac{1}{3} \lim_{t \to \infty} \tan^{-1} t = \frac{1}{3} \cdot \frac{\pi}{2} = \frac{\pi}{6} .$

 $\lim_{t \to \infty} \sin\left(\frac{\tan^{-1}t}{3}\right) = \sin\left(\lim_{t \to \infty} \frac{\tan^{-1}t}{3}\right) = \sin\frac{\pi}{6} = \frac{1}{2}.$

 $\lim_{t \to -\infty} \frac{\tan^{-1} t}{2} = \frac{1}{3} \lim_{t \to -\infty} \tan^{-1} t = \frac{1}{3} \cdot \left(-\frac{\pi}{2}\right) = -\frac{\pi}{6} .$

 $\frac{\pi}{6}$ において正弦関数 $\sin x$ は連続なので,

 $\lim_{t \to -\infty} an^{-1} t = -rac{\pi}{2}$ なので

例 変数
$$t$$
 の関数 $\sin\left(\frac{\tan^{-1}t}{3}\right)$ について、 $t\to\infty$ のとき及び $t\to-\infty$ のときの極限を調べる. $\lim_{t\to\infty} \tan^{-1}t = \frac{\pi}{2}$ なので
$$\lim_{t\to\infty} \frac{\tan^{-1}t}{3} = \frac{1}{3}\lim_{t\to\infty} \tan^{-1}t = \frac{1}{3}\cdot\frac{\pi}{2} = \frac{\pi}{6} \ .$$
 $\frac{\pi}{6}$ において正弦関数 $\sin x$ は連続なので、

 $\lim_{t \to \infty} \sin\left(\frac{\tan^{-1}t}{3}\right) = \sin\left(\lim_{t \to \infty} \frac{\tan^{-1}t}{3}\right) = \sin\frac{\pi}{6} = \frac{1}{2}.$

 $\lim_{t o -\infty} an^{-1} t = -rac{\pi}{2}$ なので

 $\lim_{t \to -\infty} \sin\left(\frac{\tan^{-1}t}{3}\right) = \sin\left(\lim_{t \to -\infty} \frac{\tan^{-1}t}{3}\right) = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}.$

 $-rac{\pi}{6}$ において正弦関数 $\sin x$ は連続なので,

 $\lim_{t \to \infty} \frac{\tan^{-1} t}{2} = \frac{1}{3} \lim_{t \to -\infty} \tan^{-1} t = \frac{1}{3} \cdot \left(-\frac{\pi}{2}\right) = -\frac{\pi}{6} .$

問
$$4.2.4$$
 変数 y の関数 $\cos\left(\frac{4\tan^{-1}y}{3}\right)$ について、 $y\to\infty$ のとき及び $y\to-\infty$ のときの極限を調べよ.
$$\lim_{y\to\infty}\tan^{-1}y=\qquad$$
 なので、
$$\lim_{y\to\infty}\frac{4\tan^{-1}y}{3}=\qquad =\qquad ;\qquad \text{において余弦}$$
 関数 $\cos x$ は連続なので、

 $\lim_{y \to \infty} \cos\left(\frac{4\tan^{-1}y}{3}\right) = \cos\left(\lim_{y \to \infty} \frac{4\tan^{-1}y}{3}\right) = \cos \qquad =$

$$\lim_{y\to-\infty} \tan^{-1}y =$$
 なので、 $\lim_{y\to-\infty} \frac{4\tan^{-1}y}{3} =$ = ; おいて余弦関数 $\cos x$ は連続なので、

$$y \to -\infty$$
 $y \to -\infty$ 3 おいて余弦関数 $\cos x$ は連続なので、 $(4 + \cos^{-1} x)$ $(4 + \cos^{-1} x)$ $(4 + \cos^{-1} x)$

$$\lim_{x \to \infty} \cos\left(\frac{4\tan^{-1}y}{\cos\left(-\frac{4\tan^{-1}y}{\cos(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{ooo}})})\right)}}\right) = \cos\left(\frac{1}{\cos\left(-\frac{4\tan^{-1}y}{\coso(-\frac{4\tan^{-1}y}{ooo}})\right)}\right)}\right)$$

$$\lim_{y \to -\infty} \cos\left(\frac{4\tan^{-1}y}{3}\right) = \cos\left(\lim_{y \to -\infty} \frac{4\tan^{-1}y}{3}\right) = \cos\left(\qquad\right) = \qquad . \quad \boxed{\&}$$

$$\lim_{y \to -\infty} \cos\left(\frac{1 \cot \frac{y}{y}}{3}\right) = \cos\left(\lim_{y \to -\infty} \frac{1 \cot \frac{y}{y}}{3}\right) = \cos\left(\frac{1 \cot \frac{y}{y}}{3}\right)$$

$$y o -\infty$$
 (3) ($y o -\infty$ 3)

問4.2.4 変数
$$y$$
 の関数 $\cos\left(\frac{4\tan^{-1}y}{3}\right)$ について、 $y\to\infty$ のとき及び $y\to-\infty$ のときの極限を調べよ.
$$\lim_{y\to\infty}\tan^{-1}y=\frac{\pi}{2} \text{ なので}, \quad \lim_{y\to\infty}\frac{4\tan^{-1}y}{3}=\frac{4}{3}\cdot\frac{\pi}{2}=\frac{2\pi}{3} \ ; \ \frac{2\pi}{3} \text{ において余弦}$$

 $\lim_{y \to \infty} \cos\left(\frac{4\tan^{-1}y}{3}\right) = \cos\left(\lim_{y \to \infty} \frac{4\tan^{-1}y}{3}\right) = \cos\frac{2\pi}{3} = -\frac{1}{2}.$

関数 $\cos x$ は連続なので

$$y o\infty$$
 (3) ($y o\infty$ 3) 3 2 $\lim_{y o-\infty} an^{-1}y =$ なので、 $\lim_{y o-\infty} rac{4 an^{-1}y}{3} =$ $=$;

おいて余弦関数 $\cos x$ は連続なので、

いて余弦関数
$$\cos x$$
 は連続なので, $\lim_{n \to \infty} \cos\left(\frac{4\tan^{-1}y}{n}\right) = \cos\left(\lim_{n \to \infty} \frac{4\tan^{-1}y}{n}\right) = \cos\left(\lim_{n \to \infty} \frac{4\tan^{-1}y}{n}\right)$

 $\lim_{y \to -\infty} \cos\left(\frac{4\tan^{-1}y}{3}\right) = \cos\left(\lim_{y \to -\infty} \frac{4\tan^{-1}y}{3}\right) = \cos\left(\frac{1}{2}\right) = \cos\left(\frac{1}{2}\right)$

$$\lim_{y \to -\infty} \cos\left(\frac{1 \cot^2 y}{3}\right) = \cos\left(\lim_{y \to -\infty} \frac{1 \cot^2 y}{3}\right) = \cos\left(\frac{1 \cot^2 y}{3}\right) = \cos\left(\frac{1$$

 $\lim_{y o \infty} an^{-1} y = rac{\pi}{2}$ なので、 $\lim_{y o \infty} rac{4 an^{-1} y}{3} = rac{4}{3} \cdot rac{\pi}{2} = rac{2\pi}{3}$; $rac{2\pi}{3}$ において余弦 関数 $\cos x$ は連続なので

$$\lim_{y \to \infty} \cos\left(\frac{4\tan^{-1}y}{3}\right) = \cos\left(\lim_{y \to \infty} \frac{4\tan^{-1}y}{3}\right) = \cos\frac{2\pi}{3} = -\frac{1}{2}.$$

 $\boxed{\mathbb{B}4.2.4}$ 変数 y の関数 $\cos\left(rac{4 an^{-1}y}{3}
ight)$ について, $y o\infty$ のとき及び

 $y o -\infty$ のときの極限を調べよ.

$$\lim_{y \to \infty} \cos\left(\frac{\pi}{3}\right) = \cos\left(\lim_{y \to \infty} \frac{\pi}{3}\right) = \cos\frac{\pi}{3} = -\frac{\pi}{2}.$$

	9	/ -	(9	/	(9	/ -		/		_		
$\lim_{n\to-\infty}$	tan-	$^{1}y = -$	$-\frac{\pi}{2}$	なの	で,	$\lim_{y\to-\infty}\frac{4}{}$	$\frac{\tan^{-1}}{3}$	$\frac{^{1}y}{3} = \frac{4}{3}$	$\left(-\frac{\pi}{2}\right)$) = -	$-\frac{2\pi}{3}$	$\frac{2\pi}{3}$	に

$\lim_{\to -\infty} \tan^{-1} y = -\frac{\pi}{2}$	なので,	$\lim_{y \to -\infty}$	$\frac{4\tan^{-1}y}{3}$	$=\frac{4}{3}$	$\left(-\frac{\pi}{2}\right)$	$=-\frac{2\pi}{3}$; $-\frac{2\pi}{3}$	に
					` ,			

$$\lim_{y\to -\infty} an^{-1}y = -rac{\pi}{2}$$
 なので、 $\lim_{y\to -\infty} rac{4\cot^{-y}}{3} = rac{4}{3}\cdot \left(-rac{\pi}{2}\right) = -rac{2\pi}{3}$; $-rac{2\pi}{3}$ において余弦関数 $\cos x$ は連続なので、

$$y o -\infty$$
 $y o -\infty$ y

$$\lim_{y \to -\infty} \cos\left(\frac{4\tan^{-1}y}{3}\right) = \cos\left(\lim_{y \to -\infty} \frac{4\tan^{-1}y}{3}\right) = \cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2} . \quad \boxed{8}$$

$$\lim_{y \to -\infty} \cos\left(\frac{1}{3}\right) = \cos\left(\lim_{y \to -\infty} \frac{1}{3}\right) = \cos\left(-\frac{3}{3}\right) = -\frac{1}{2}.$$

 $rac{|M|}{2}$ 変数 x の関数 $x\sinrac{2}{x}$ について, $x o\infty$ のときの極限を調べる.

 $rac{|M|}{2}$ 変数 x の関数 $x\sinrac{2}{x}$ について, $x o\infty$ のときの極限を調べる.変数 y

を $y = \frac{2}{x}$ とおく.

$$x\sin\frac{2}{x} = \frac{2}{y}\sin y = 2\cdot\frac{\sin y}{y} .$$

 $rac{|M|}{2}$ 変数 x の関数 $x\sinrac{2}{x}$ について, $x o\infty$ のときの極限を調べる.変数 y

を $y=\frac{2}{x}$ とおく. $x=\frac{2}{y}$ なので

を
$$y=\frac{2}{x}$$
 とおく. $x=\frac{2}{y}$ なので
$$x\sin\frac{2}{x}=\frac{2}{y}\sin y=2\cdot\frac{\sin y}{y}\;.$$
 $x\to\infty$ のとき $y=\frac{2}{x}\to 0$. $\lim_{y\to 0}\frac{\sin y}{y}=1$ なので,
$$\lim_{x\to\infty}\left(x\sin\frac{2}{x}\right)=\lim_{y\to 0}\left(2\cdot\frac{\sin y}{y}\right)=2\cdot 1=2\;.$$

| M | 変数 x の関数 $x\sinrac{2}{x}$ について, $x o\infty$ のときの極限を調べる.変数 y

終

$$extbf{184.2.5}$$
 変数 y の関数 $y\sin{3\over 2y}$ について, $y o -\infty$ のときの極限を調べよ. 変数 x を $x={3\over 2y}$ とおく. $y=$ なので

$$y\sin\frac{3}{2y} = \sin x = -\frac{\sin x}{x} .$$

$$y o -\infty$$
 のとき $x o$. $\lim_{x o 0} \frac{\sin x}{x} =$ なので、

$$\lim_{x \to 0} \left(u \sin \frac{3}{x} \right) = \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = \frac{1}{x} = \frac{1}{x}$$

$$\lim_{x \to \infty} \left(y \sin \frac{3}{2x} \right) = \lim_{x \to \infty} \left(-\frac{\sin x}{x} \right) = -\frac{1}{2} = -\frac{1}{2}$$

$$\lim_{y \to -\infty} \left(y \sin \frac{3}{2y} \right) = \lim_{x \to 0} \left(\cdot \frac{\sin x}{x} \right) = \cdot = .$$

問
$$4.2.5$$
 変数 y の関数 $y\sin\frac{3}{2y}$ について, $y\to-\infty$ のときの極限を調べよ. 変数 x を $x=\frac{3}{2y}$ とおく. $y=\frac{3}{2x}$ なので

$$y\sin\frac{3}{2y} = \frac{3}{2x}\sin x = \frac{3}{2} \cdot \frac{\sin x}{x} .$$

$$y o -\infty$$
 のとき $x o 0$. $\lim_{x o 0} rac{\sin x}{x} = 1$ なので、

$$y \to -\infty$$
 occ $x \to 0$: $\lim_{x \to 0} \frac{1}{x} = 1$ and $\lim_{x \to 0} \left(\frac{3}{x}, \frac{\sin x}{x}\right) = \frac{3}{x}, 1 = \frac{3}{x}$

$$\lim_{x \to 0} \left(y \sin \frac{3}{2x} \right) = \lim_{x \to 0} \left(\frac{3}{2} \cdot \frac{\sin x}{x} \right) = \frac{3}{2} \cdot 1 = \frac{3}{2} .$$

$$\lim_{y \to -\infty} \left(y \sin \frac{3}{2y} \right) = \lim_{x \to 0} \left(\frac{3}{2} \cdot \frac{\sin x}{x} \right) = \frac{3}{2} \cdot 1 = \frac{3}{2} .$$

$$\lim_{y \to -\infty} \left(y \sin \frac{3}{2y} \right) = \lim_{x \to 0} \left(\frac{3}{2} \cdot \frac{\sin x}{x} \right) = \frac{3}{2} \cdot 1 = \frac{3}{2} .$$

$$\lim_{y \to -\infty} \left(y \sin \frac{1}{2y} \right) = \lim_{x \to 0} \left(\frac{3}{2} \cdot \frac{1}{x} \right) = \frac{3}{2} \cdot 1 = \frac{3}{2} .$$

のとき関数 f(x) と g(x) とが収束するならば,

定理 定数 a は実数または ∞ または $-\infty$ とする. 変数 x について $x \rightarrow a$

$$\lim_{x \to a} \{ f(x) \pm g(x) \} = \left\{ \lim_{x \to a} f(x) \right\} \pm \left\{ \lim_{x \to a} g(x) \right\} \quad ($$
 複号同順) ,
$$\lim_{x \to a} \{ f(x) g(x) \} = \left\{ \lim_{x \to a} f(x) \right\} \left\{ \lim_{x \to a} g(x) \right\} ;$$

 $x \to a$ のとき f(x) と g(x) とが収束して $\lim_{x \to a} g(x) \neq 0$ ならば,

$$ightarrow a$$
 のとき $f(x)$ とが収集して $\lim_{x o a} g(x)
eq 0$ ならは、 $f(x)$ $\lim_{x o a} f(x)$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

$$\lim_{x \to a} g(x) \qquad \lim_{x \to a} g(x)$$

$$a$$
 及び変数 x について $x \rightarrow a$ のとき関数 $f(x)$ または $g(x)$ が発

定数
$$a$$
 及び変数 x について $x \rightarrow a$ のとき関数 $f(x)$ または $g(x)$ が発散

$$a$$
 及び変数 x について $x \to a$ のとさ関数 $f(x)$ または $g(x)$ かま

するときはこの定理を使えない.

定数 a は実数または ∞ または $-\infty$ とする. 変数 x の関数 f(x) と g(x)とについて以下のことが一般的にいえる.

定数 a は実数または ∞ または $-\infty$ とする. 変数 x の関数 f(x) と g(x) とについて以下のことが一般的にいえる. (1) $\lim_{x\to a}f(x)=\infty$ で $x\to a$ のとき g(x) が収束するならば, $\lim_{x\to a}\{f(x)\pm g(x)\}=\infty$.

とについて以下のことが一般的にいえる.
$$\begin{array}{ll} \textbf{(1)} & \lim_{x \to a} f(x) = \infty & \texttt{で} & x \to a & \texttt{のとき} & g(x) & \texttt{が収束するならば}, \\ \lim_{x \to a} \{f(x) \pm g(x)\} = \infty & . \\ \textbf{(2)} & \lim_{x \to a} f(x) = \infty & \texttt{で} & x \to a & \texttt{のとき} & g(x) & \texttt{が収束して} & \lim_{x \to a} g(x) > 0 & \texttt{ならば}, \\ \end{array}$$

定数 a は実数または ∞ または $-\infty$ とする. 変数 x の関数 f(x) と g(x)

 $\lim_{x \to a} \{ f(x)g(x) \} = \infty , \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \infty .$

とについて以下のことが一般的にいえる. (1)
$$\lim_{x \to a} f(x) = \infty$$
 で $x \to a$ のとき $g(x)$ が収束するならば, $\lim_{x \to a} \{f(x) \pm g(x)\} = \infty$. (2) $\lim_{x \to a} f(x) = \infty$ で $x \to a$ のとき $g(x)$ が収束して $\lim_{x \to a} g(x) > 0$ ならば,

(3) $\lim_{x \to a} f(x) = \infty$ で $x \to a$ のとき g(x) が収束して $\lim_{x \to a} g(x) < 0$ ならば、

 $\lim_{x \to a} \{f(x)g(x)\} = \infty , \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \infty .$

 $\lim_{x \to a} \{ f(x)g(x) \} = -\infty , \quad \lim_{x \to a} \frac{f(x)}{g(x)} = -\infty .$

定数 a は実数または ∞ または $-\infty$ とする. 変数 x の関数 f(x) と g(x)

とについて以下のことが一般的にいえる。 (1)
$$\lim_{x \to a} f(x) = \infty$$
 で $x \to a$ のとき $g(x)$ が収束するならば, $\lim_{x \to a} \{f(x) \pm g(x)\} = \infty$.

定数 a は実数または ∞ または $-\infty$ とする. 変数 x の関数 f(x) と g(x)

(2) $\lim_{x\to a}f(x)=\infty$ で $x\to a$ のとき g(x) が収束して $\lim_{x\to a}g(x)>0$ ならば, $\lim_{x \to a} \{f(x)g(x)\} = \infty , \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \infty .$

(3)
$$\lim_{x \to a} f(x) = \infty$$
 で $x \to a$ のとき $g(x)$ が収束して $\lim_{x \to a} g(x) < 0$ ならば,

$$\lim_{x \to a} \{f(x)g(x)\} = -\infty , \quad \lim_{x \to a} \frac{f(x)}{g(x)} = -\infty .$$

$$x \to a$$
 (4) $\lim_{x \to a} f(x) = \infty$ かつ $\lim_{x \to a} g(x) = \infty$ ならば, $\lim_{x \to a} \{f(x) + g(x)\} = \infty$,

$$\lim_{x \to a} f(x) = \infty \quad \text{if } \int \lim_{x \to a} g(x) = \infty \quad \text{if } \int \lim_{x \to a} \{f(x) + g(x)\} = \infty \quad ,$$

$$\inf \{f(x)g(x)\} = \infty \quad .$$

 $\lim_{x \to a} \{ f(x)g(x) \} = \infty .$

$$\{f(x)g(x)\} = \infty .$$

 $oxed{\mathbb{M}}$ 変数 y の関数 $2{\left(rac{5}{4}
ight)}^y-7$ について $y o\infty$ のときの極限を調べる.

 $oxed{\mathbb{M}}$ 変数 y の関数 $2{\left(rac{5}{4}
ight)}^y-7$ について $y o\infty$ のときの極限を調べる.

 $rac{5}{4}>1$ より $\lim_{y o\infty}\Bigl(rac{5}{4}\Bigr)^y=\infty$ なので、

$$rac{5}{4}>1$$
 より $\lim_{y o\infty}\left(rac{5}{4}
ight)^y=\infty$ なので、 $\lim_{y o\infty}\left\{2\left(rac{5}{4}
ight)^y
ight\}=\infty$ 、よって $\lim_{y o\infty}\left\{2\left(rac{5}{4}
ight)^y-7
ight\}=\infty$.

 $rac{|M|}{2}$ 変数 y の関数 $2{\left(rac{5}{4}
ight)}^y-7$ について $y o\infty$ のときの極限を調べる.

例 変数
$$y$$
 の関数 $2\Big(\frac{5}{4}\Big)^y-7$ について $y o\infty$ のときの極限を調べる. $\frac{5}{4}>1$ より $\lim_{y o\infty}\Big(\frac{5}{4}\Big)^y=\infty$ なので, $\lim_{y o\infty}\Big\{2\Big(\frac{5}{4}\Big)^y\Big\}=\infty$, よって

$$\lim_{y o\infty}\left\{2\left(rac{5}{4}
ight)^y-7
ight\}=\infty$$
 .

$$\lim_{y \to \infty} \left(\frac{5}{4}\right)^y = \infty$$
 は発散しているので $\lim_{y \to \infty} \left\{2\left(\frac{5}{4}\right)^y\right\}$ を $2\lim_{y \to \infty} \left(\frac{5}{4}\right)^y$ に変形

しないこと.
$$\lim_{y \to \infty} \left\{2\left(\frac{5}{4}\right)^y\right\} = \infty$$
 は発散しているので $\lim_{y \to \infty} \left\{2\left(\frac{5}{4}\right)^y - 7\right\}$ を

 $\lim_{y \to \infty} \left\{ 2 \left(\frac{5}{4} \right)^y \right\} - 7$ に変形しないこと.

$$\left\{2\left(\frac{3}{4}\right)\right\}-7$$
 に変形しないこと.

問
$$4.2.6$$
 変数 u の関数 $5\left(\frac{6}{7}\right)^u+8$ について, $u\to -\infty$ のときの極限を調

べよ.
$$\lim_{u\to -\infty} \left(\frac{6}{7}\right)^u = \qquad \texttt{tooc}, \quad \lim_{u\to -\infty} \left\{5\left(\frac{6}{7}\right)^u + 8\right\} = \quad .$$

ミよ.
$$\lim_{u o -\infty}\Bigl(rac{6}{7}\Bigr)^u = \infty$$
 なので, $\lim_{u o -\infty}\Bigl\{5\Bigl(rac{6}{7}\Bigr)^u + 8\Bigr\} = \infty$.

 $[\mathbb{B}4.2.6]$ 変数 u の関数 $5 \Big(rac{6}{7} \Big)^u + 8$ について, $u o - \infty$ のときの極限を調

$$\boxed{\mathbb{B}4.2.7}$$
 変数 y の関数 $\left(\frac{5}{y^2}-3\right)\log_2 y$ について, $y\to\infty$ のときの極限を調べよ.

よ.	(0	,		
		/ F \		
$\lim \frac{\partial}{\partial x} = x$	ので lim	$(\frac{5}{2} - 3) =$	$\lim_{y \to \infty} \log_2 y =$	なので

$$\lim_{y \to \infty} \frac{5}{y^2} =$$
 なので $\lim_{y \to \infty} \left(\frac{5}{y^2} - 3 \right) =$. $\lim_{y \to \infty} \log_2 y =$ なので $\lim_{y \to \infty} \left\{ \left(\frac{5}{y^2} - 3 \right) \log_2 y \right\} =$.

問
$$4.2.7$$
 変数 y の関数 $\left(\frac{5}{y^2}-3\right)\log_2 y$ について, $y\to\infty$ のときの極限を調べよ.

同年2.1 変数
$$y$$
 の関数 $\left(\frac{1}{y^2} - 3\right) \log_2 y$ について, $y \to \infty$ のときの極限を調べよ.
$$\lim_{y \to \infty} \frac{5}{y^2} = 0 \quad \text{なので} \quad \lim_{y \to \infty} \left(\frac{5}{y^2} - 3\right) = -3 \quad . \quad \lim_{y \to \infty} \log_2 y = \infty \quad \text{なので} \quad \lim_{y \to \infty} \left\{ \left(\frac{5}{y^2} - 3\right) \log_2 y \right\} = -\infty \quad .$$

$$\lim_{y \to \infty} \frac{1}{y^2} = 0 \quad \text{t o τ} \quad \lim_{y \to \infty} \left(\frac{1}{y^2} - 3 \right) = -3 \quad \lim_{y \to \infty} \log_2 y = \infty \quad \text{t o τ}$$

$$\left\{ \left(\frac{5}{v^2} - 3 \right) \log_2 y \right\} = -\infty .$$

$$\left(\frac{5}{y^2} - 3\right) \log_2 y \bigg\} = -\infty . [$$

$\sqrt{y^2} - 3$	$\int \log_2 y$	$\Rightarrow = -\infty$.				
	$\left(\frac{\overline{y^2}}{y^2}\right)^{-3}$	$\left(\overline{y^2} - 3\right) \log_2 y$	$\left(\frac{1}{y^2} - 3\right) \log_2 y = -\infty .$	$\left(\frac{1}{y^2} - 3\right) \log_2 y = -\infty .$	$\left(\frac{1}{y^2} - 3\right) \log_2 y = -\infty .$	$\left(\frac{1}{y^2} - 3\right) \log_2 y = -\infty .$

$$\left(\left(y^{2} \right)^{-320} \right)$$

例 変数
$$x$$
 の関数 $\frac{7^x+8^x}{9^x}$ について, $x \to \infty$ のとき及び $x \to -\infty$ のときの極限を調べる.

の極限を調べる.
$$\frac{7^x+8^x}{9^x}=\frac{7^x}{9^x}+\frac{8^x}{9^x}=\left(\frac{7}{9}\right)^x+\left(\frac{8}{9}\right)^x\;.$$

 $rac{@}{}$ 変数 x の関数 $rac{7^x+8^x}{0^x}$ について, $x o\infty$ のとき及び $x o-\infty$ のとき

例 変数
$$x$$
 の関数 $\frac{7^x+8^x}{9^x}$ について、 $x\to\infty$ のとき及び $x\to-\infty$ のときの極限を調べる.
$$\frac{7^x+8^x}{9^x}=\frac{7^x}{9^x}+\frac{8^x}{9^x}=\left(\frac{7}{9}\right)^x+\left(\frac{8}{9}\right)^x\;.$$

$$\lim_{x \to \infty} \left(\frac{7}{9}\right)^x = 0$$
 , $\lim_{x \to \infty} \left(\frac{8}{9}\right)^x = 0$ なので,

$$\lim_{t\to c}$$

 $\lim_{x \to \infty} \frac{7^x + 8^x}{9^x} = \lim_{x \to \infty} \left\{ \left(\frac{7}{9} \right)^x + \left(\frac{8}{9} \right)^x \right\} = \lim_{x \to \infty} \left(\frac{7}{9} \right)^x + \lim_{x \to \infty} \left(\frac{7}{9} \right)^x = 0.$

例 変数
$$x$$
 の関数 $\frac{7^x+8^x}{9^x}$ について, $x\to\infty$ のとき及び $x\to-\infty$ のときの極限を調べる.
$$\frac{7^x+8^x}{9^x}=\frac{7^x}{9^x}+\frac{8^x}{9^x}=\left(\frac{7}{9}\right)^x+\left(\frac{8}{9}\right)^x \ .$$

 $\lim_{x \to \infty} \frac{7^x + 8^x}{9^x} = \lim_{x \to \infty} \left\{ \left(\frac{7}{9} \right)^x + \left(\frac{8}{9} \right)^x \right\} = \infty.$

$$\lim_{x o\infty}\Bigl(rac{7}{9}\Bigr)^x=0$$
 , $\lim_{x o\infty}\Bigl(rac{8}{9}\Bigr)^x=0$ なので,

 $\lim_{x \to \infty} \frac{7^x + 8^x}{9^x} = \lim_{x \to \infty} \left\{ \left(\frac{7}{9} \right)^x + \left(\frac{8}{9} \right)^x \right\} = \lim_{x \to \infty} \left(\frac{7}{9} \right)^x + \lim_{x \to \infty} \left(\frac{7}{9} \right)^x = 0.$

 $\lim_{x o -\infty} \left(rac{7}{9}
ight)^x = \infty$, $\lim_{x o -\infty} \left(rac{8}{9}
ight)^x = \infty$ なので,

 $rac{@}{}$ 変数 x の関数 $rac{7^x+8^x}{9^x}$ について, $x o\infty$ のとき及び $x o-\infty$ のとき の極限を調べる. $\frac{7^x + 8^x}{9^x} = \frac{7^x}{9^x} + \frac{8^x}{9^x} = \left(\frac{7}{9}\right)^x + \left(\frac{8}{9}\right)^x.$ $\lim_{x \to \infty} \left(\frac{7}{9}\right)^x = 0$, $\lim_{x \to \infty} \left(\frac{8}{9}\right)^x = 0$ なので,

 $\lim_{x \to -\infty} \frac{7^x + 8^x}{9^x} = \lim_{x \to -\infty} \left\{ \left(\frac{7}{9} \right)^x + \left(\frac{8}{9} \right)^x \right\} = \infty.$

 $\lim_{x \to -\infty} \left(\frac{7}{9}\right)^x = \infty$ 及び $\lim_{x \to -\infty} \left(\frac{8}{9}\right)^x = \infty$ は発散しているので

 $\lim_{x\to -\infty} \left\{ \left(\frac{7}{9}\right)^x + \left(\frac{8}{9}\right)^x \right\} \ \ \textbf{を} \ \ \lim_{x\to -\infty} \left(\frac{7}{9}\right)^x + \lim_{x\to -\infty} \left(\frac{8}{9}\right)^x \ \ に変形しないこと.$

$$\lim_{x \to \infty} \frac{7^x + 8^x}{9^x} = \lim_{x \to \infty} \left\{ \left(\frac{7}{9} \right)^x + \left(\frac{8}{9} \right)^x \right\} = \lim_{x \to \infty} \left(\frac{7}{9} \right)^x + \lim_{x \to \infty} \left(\frac{7}{9} \right)^x = 0.$$

 $\lim_{x o -\infty}\Bigl(rac{7}{9}\Bigr)^x = \infty$, $\lim_{x o -\infty}\Bigl(rac{8}{9}\Bigr)^x = \infty$ なので,

問
$$4.2.8$$
 変数 x の関数 $\frac{4^x+5^x}{6^x}$ について, $x\to\infty$ のとき及び $x\to-\infty$ のときの極限を調べよ.
$$\frac{4^x+5^x}{6^x}=-+-=\left(\right)^x+\left(\right)^x\,.$$

 $\lim_{x \to -\infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to -\infty} \left\{ \left(\right)^x + \left(\right)^x \right\} = .$

$$\lim_{x \to \infty} \left(\begin{array}{c} \\ \end{array} \right)^x = \quad , \quad \lim_{x \to \infty} \left(\begin{array}{c} \\ \end{array} \right)^x = \quad$$
なので、

 $\lim_{x \to \infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to \infty} \left\{ \left(\right)^x + \left(\right)^x \right\} = \lim_{x \to \infty} \left(\right)^x + \lim_{x \to \infty} \left(\right)^x = .$

 $\lim_{x o -\infty} \left(egin{array}{c}
ight)^x =
ight.$, $\lim_{x o -\infty} \left(egin{array}{c}
ight)^x =
ight.$ なので,

問4.2.8 変数
$$x$$
 の関数 $\frac{4^x+5^x}{6^x}$ について, $x\to\infty$ のとき及び $x\to-\infty$ のときの極限を調べよ.
$$\frac{4^x+5^x}{6^x}=\frac{4^x}{6^x}+\frac{5^x}{6^x}=\left(\frac{2}{3}\right)^x+\left(\frac{5}{6}\right)^x\;.$$

$$\lim_{x o \infty} \left(\begin{array}{c} \end{array}
ight)^x = \quad , \quad \lim_{x o \infty} \left(\begin{array}{c} \end{array}
ight)^x = \quad$$
なので,

$$\frac{11}{\infty}$$

$$4^{a}$$

$$\frac{1}{1}$$

$$4^x$$

- $\lim_{x \to \infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to \infty} \left\{ \left(\right)^x + \left(\right)^x \right\} = \lim_{x \to \infty} \left(\right)^x + \lim_{x \to \infty} \left(\right)^x = .$

 $\lim_{x o -\infty} \left(egin{array}{c}
ight)^x =
ight.$, $\lim_{x o -\infty} \left(egin{array}{c}
ight)^x =
ight.$ なので,

 $\lim_{x \to -\infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to -\infty} \left\{ \left(\right)^x + \left(\right)^x \right\} = .$

問4.2.8 変数
$$x$$
 の関数 $\frac{4^x+5^x}{6^x}$ について, $x\to\infty$ のとき及び $x\to-\infty$ のときの極限を調べよ.
$$\frac{4^x+5^x}{6^x}=\frac{4^x}{6^x}+\frac{5^x}{6^x}=\left(\frac{2}{3}\right)^x+\left(\frac{5}{6}\right)^x\;.$$

$$\operatorname{m}\left(\frac{2}{3}\right)^x$$

$$\left(\begin{array}{c} x \\ \end{array}\right)^x =$$

$$\lim_{x \to \infty} \left(\frac{2}{3}\right)^x = 0 , \quad \lim_{x \to \infty} \left(\frac{5}{6}\right)^x = 0 \text{ toc},$$

$$\lim_{x \to \infty} 4^x + 5^x - \lim_{x \to \infty} \left\{ \left(\frac{2}{3}\right)^x + \left(\frac{5}{3}\right)^x \right\}$$

$$\lim_{x \to \infty} \frac{4^x}{6}$$

- $\lim_{x \to \infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to \infty} \left\{ \left(\frac{2}{3} \right)^x + \left(\frac{5}{6} \right)^x \right\} = \lim_{x \to \infty} \left(\frac{2}{3} \right)^x + \lim_{x \to \infty} \left(\frac{5}{6} \right)^x = 0.$

 $\lim_{x o -\infty} \left(egin{array}{ccc}
ight)^x = & , & \lim_{x o -\infty} \left(egin{array}{ccc}
ight)^x = & なので, \end{array}$

 $\lim_{x \to -\infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to -\infty} \left\{ \left(\right)^x + \left(\right)^x \right\} = .$

$$184.2.8$$
 変数 x の関数 $\frac{4^x+5^x}{6^x}$ について, $x\to\infty$ のとき及び $x\to-\infty$ のときの極限を調べよ.

 $\frac{4^x + 5^x}{6^x} = \frac{4^x}{6^x} + \frac{5^x}{6^x} = \left(\frac{2}{3}\right)^x + \left(\frac{5}{6}\right)^x$.

$$\lim_{x o\infty}\Bigl(rac{2}{3}\Bigr)^x=0$$
 , $\lim_{x o\infty}\Bigl(rac{5}{6}\Bigr)^x=0$ なので,

$$\lim_{x \to \infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to \infty} \left\{ \left(\frac{2}{3} \right)^x + \left(\frac{5}{6} \right)^x \right\} = \lim_{x \to \infty} \left(\frac{2}{3} \right)^x + \lim_{x \to \infty} \left(\frac{5}{6} \right)^x = 0.$$

$$\lim_{x \to \infty} \left(\frac{2}{\pi}\right)^x = \infty$$
 , $\lim_{x \to \infty} \left(\frac{5}{\pi}\right)^x = \infty$ なので,

$$\lim_{x o -\infty}\Bigl(rac{2}{3}\Bigr)^x = \infty$$
 , $\lim_{x o -\infty}\Bigl(rac{5}{6}\Bigr)^x = \infty$ なので,

$$\lim_{x \to -\infty} \left(\frac{1}{3}\right) = \infty \quad , \quad \lim_{x \to -\infty} \left(\frac{1}{6}\right) = \infty \quad \text{for } 0 \in \mathbb{N},$$

$$\lim_{x \to -\infty} \frac{4^x + 5^x}{6} = \lim_{x \to -\infty} \left(\frac{2}{5}\right)^x + \left(\frac{5}{5}\right)^x = \infty$$

$$\lim_{x \to -\infty} \frac{4^x + 5^x}{6^x} = \lim_{x \to -\infty} \left\{ \left(\frac{2}{3} \right)^x + \left(\frac{5}{6} \right)^x \right\} = \infty .$$

$$\lim_{x \to -\infty} \frac{4+6}{6^x} = \lim_{x \to -\infty} \left\{ \left(\frac{2}{3} \right) + \left(\frac{3}{6} \right)^x \right\} = \infty .$$

$$x \to -\infty$$
 θ^x $x \to -\infty$ ((3) (0))