4.4 関数のグラフ

視覚的に理解しやすくなる.

変数 x の関数 y = f(x) について, xy 座標平面においてグラフを描くと,

変数
$$x$$
 の関数 $y=f(x)$ について、 xy 座標平面におけるグラフとは、 $y=f(x)$ となる点 (x,y) の全体 $\{(x,y)\mid y=f(x)\}$ のことである.

変数
$$x$$
 の関数 $y=f(x)$ について、 xy 座標平面におけるグラフとは、 $y=f(x)$ となる点 (x,y) の全体 $\{(x,y)\mid y=f(x)\}$ のことである。変数 x の関数 $y=f(x)$ 及び各実数 a,b について、 点 (a,b) が $y=f(x)$ のグラフに属す \iff $(a,b)\in \{(x,y)\mid y=f(x)\}$ \iff $b=f(a)$.

変数
$$x$$
 の関数 $y=f(x)$ について、 xy 座標平面におけるグラフとは、 $y=f(x)$ となる点 (x,y) の全体 $\{(x,y)\mid y=f(x)\}$ のことである。変数 x の関数 $y=f(x)$ 及び各実数 a,b について、点 (a,b) が $y=f(x)$ のグラフに属す \iff $(a,b)\in \{(x,y)\mid y=f(x)\}$ \iff $b=f(a)$. 例 変数 x の関数 $y=x^2-3x$ について、 xy 座標平面におけるグラフは、 $y=x^2-3x$ となる点 (x,y) の全体 $\{(x,y)\mid y=x^2-3x\}$ である。

$$y=f(x)$$
 となる点 (x,y) の全体 $\{(x,y)\mid y=f(x)\}$ のことである. 変数 x の関数 $y=f(x)$ 及び各実数 a,b について, 点 (a,b) が $y=f(x)$ のグラフに属す \iff $(a,b)\in \{(x,y)\mid y=f(x)\}$ \iff $b=f(a)$.

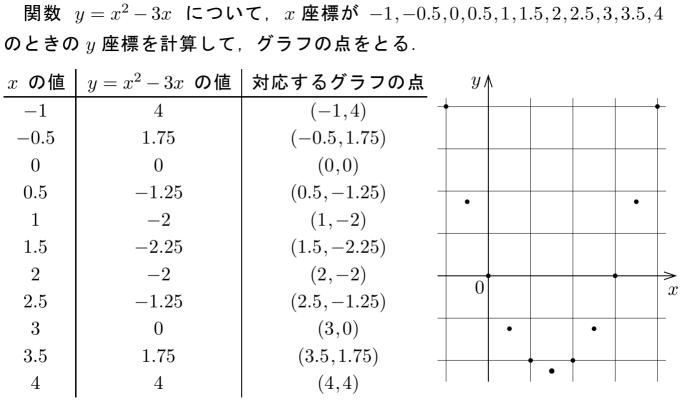
 $|\emptyset|$ 変数 x の関数 $y=x^2-3x$ について, xy 座標平面におけるグラフは,

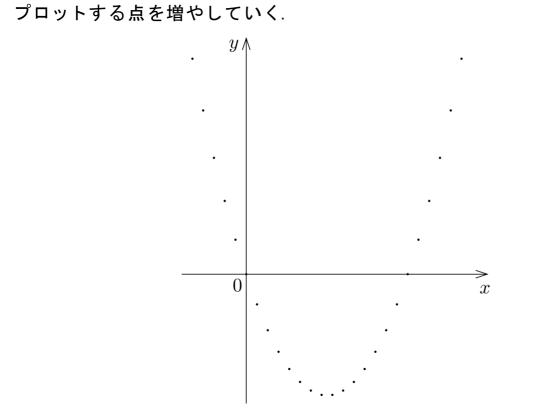
変数 x の関数 y = f(x) について, xy 座標平面におけるグラフとは,

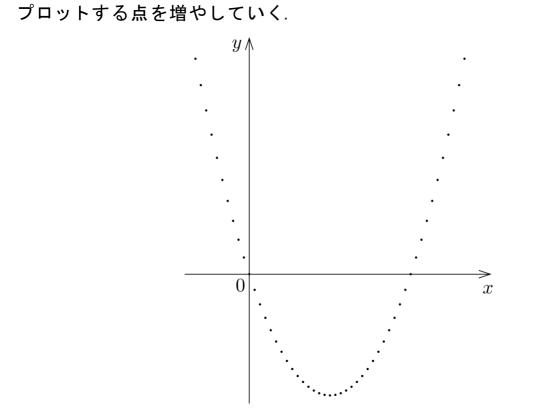
$$y=x^2-3x$$
 となる点 (x,y) の全体 $\{\;(x,y)\mid y=x^2-3x\;\}$ である. 各実数 a,b について,

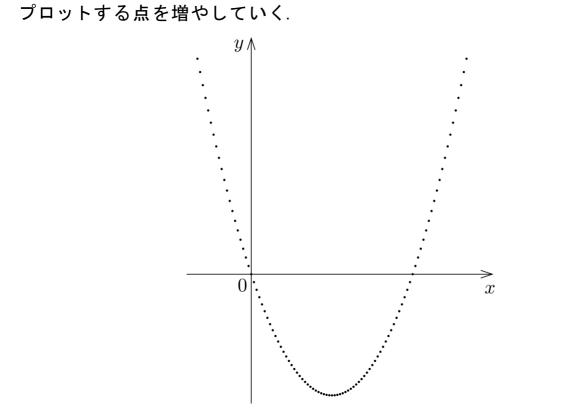
a,b について、 点 (a,b) が $y=x^2-3x$ のグラフに属す \iff $(a,b)\in\{(x,y)\mid y=x^2-3x\}$

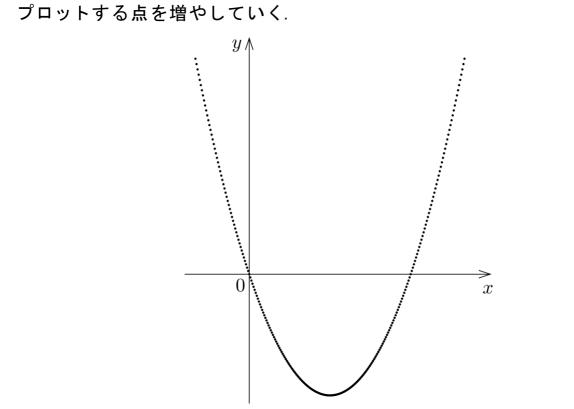
点
$$(a,b)$$
 が $y=x^2-3x$ のグラフに属す \iff $(a,b)\in\{\;(x,y)\mid y=x^2-3x\;\}$ \iff $b=a^2-3a\;.$

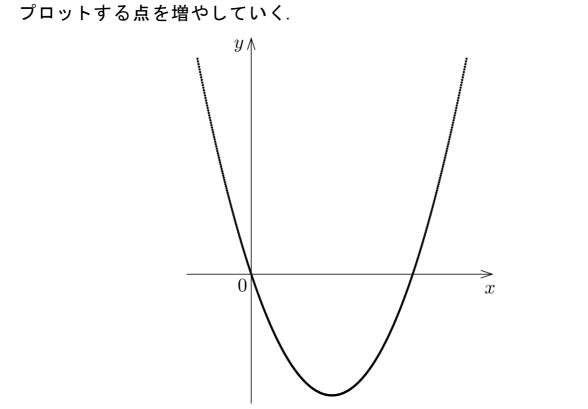




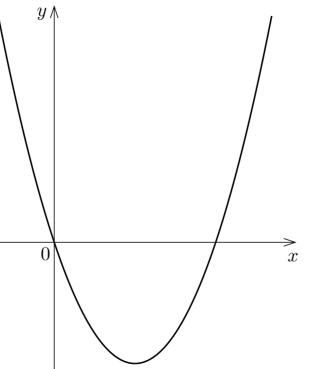








このようにして行きつく曲線が関数 $y=x^2-3x$ のグラフである. $y \wedge y$



終

例 xy 座標平面の 3 点 (-1,2) と (1,-2) と (2,1) とについて、変数 x の関数 $y=x^2-3x$ のグラフに属すかどうか調べる. xy 座標平面の点を (x,y) とおく.

例 xy 座標平面の 3 点 (-1,2) と (1,-2) と (2,1) とについて,変数 x の関数 $y=x^2-3x$ のグラフに属すかどうか調べる. xy 座標平面の点を (x,y) とおく. (x,y)=(-1,2) のとき, $x^2-3x=4$, y=2 なので $x^2-3x\neq y$,よって点 (-1,2) は $y=x^2-3x$ のグラフに属さない.

例 xy 座標平面の 3 点 (-1,2) と (1,-2) と (2,1) とについて、変数 x の関数 $y=x^2-3x$ のグラフに属すかどうか調べる. xy 座標平面の点を (x,y) とおく. (x,y)=(-1,2) のとき、 $x^2-3x=4$, y=2 なので $x^2-3x\neq y$, よって点 (-1,2) は $y=x^2-3x$ のグラフに属さない. (x,y)=(1,-2) のとき、 $x^2-3x=-2$, y=-2 なので $x^2-3x=y$, よって点 (1,-2) は $y=x^2-3x$ のグラフに属さない.

 $|\emptyset| xy$ 座標平面の3点(-1,2)と(1,-2)と(2,1)とについて、変数xの関 数 $y=x^2-3x$ のグラフに属すかどうか調べる. xy 座標平面の点を (x,y)とおく. (x,y)=(-1,2) のとき, $x^2-3x=4$, y=2 なので $x^2-3x\neq y$, よって点 (-1,2) は $y=x^2-3x$ のグラフに属さない. (x,y)=(1,-2) の

とき、 $x^2-3x=-2$, y=-2 なので $x^2-3x=y$, よって点 (1,-2) は

 $y=x^2-3x$ のグラフに属さない. (x,y)=(2,1) のとき, $x^2-3x=-2$,

y=1 なので $x^2-3x\neq y$, よって点 (2,1) は $y=x^2-3x$ のグラフに属さ

ない.

終

 $\boxed{\mathbb{B}4.4.1}$ xy 座標平面の以下の 4 点について、変数 x の関数 $y=x^3-5x$ のグ ラフに属すかどうか調べよ. (1) (x,y)=(-1,6) のとき $x^3-5x=y$ なので、点 (-1,6) は $y = x^3 - 5x$ のグラフに属 (2) (x,y) = (0,3) のとき $x^3 - 5x =$ y なので、点 (0,5) は $y=x^3-5x$ のグラフに属 (3) (x,y) = (1,4) のとき $x^3 - 5x =$ y なので、点 (0,5) は $y=x^3-5x$ のグラフに属 (4) (x,y) = (2,-2) のとき $x^3 - 5x =$ y なので、点 (2,-2) は $y = x^3 - 5x$ のグラフに属

 $\boxed{\mathbb{B}4.4.1}$ xy 座標平面の以下の 4 点について、変数 x の関数 $y=x^3-5x$ のグ ラフに属すかどうか調べよ. (1) (x,y)=(-1,6) のとき $x^3-5x=4\neq y$ なので、点 (-1,6) は $y = x^3 - 5x$ のグラフに属さない. (2) (x,y) = (0,3) のとき $x^3 - 5x =$ y なので、点 (0.5) は $y=x^3-5x$ のグラフに属 y なので、点 (0.5) は $y = x^3 - 5x$ (3) (x,y) = (1,4) のとき $x^3 - 5x =$ のグラフに属 (4) (x,y) = (2,-2) のとき $x^3 - 5x =$ y なので、点 (2,-2) は $y = x^3 - 5x$ のグラフに属

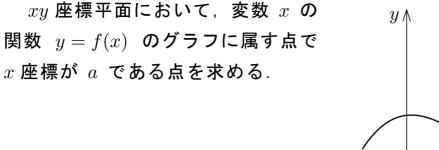
 $\boxed{\mathbb{B}4.4.1}$ xy 座標平面の以下の 4 点について、変数 x の関数 $y=x^3-5x$ のグ ラフに属すかどうか調べよ. (1) (x,y)=(-1,6) のとき $x^3-5x=4\neq y$ なので、点 (-1,6) は $y = x^3 - 5x$ のグラフに属さない. (2) (x,y)=(0,3) のとき $x^3-5x=3\neq y$ なので、点 (0,5) は $y=x^3-5x$ のグラフに属さない. (3) (x,y) = (1,4) のとき $x^3 - 5x =$ y なので、点 (0.5) は $y = x^3 - 5x$ のグラフに属 (4) (x,y) = (2,-2) のとき $x^3 - 5x =$ y なので、点 (2,-2) は $y = x^3 - 5x$ のグラフに属

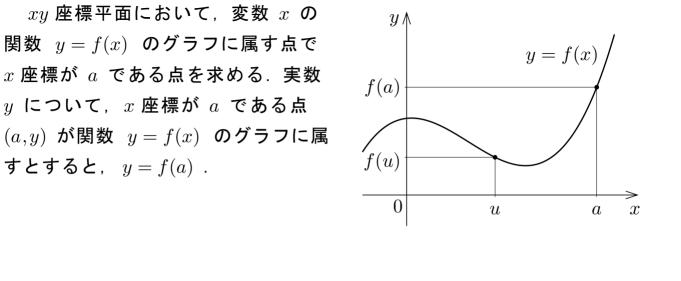
 $\boxed{\mathbb{B}4.4.1}$ xy 座標平面の以下の 4 点について、変数 x の関数 $y=x^3-5x$ のグ ラフに属すかどうか調べよ. (1) (x,y)=(-1,6) のとき $x^3-5x=4\neq y$ なので、点 (-1,6) は $y = x^3 - 5x$ のグラフに属さない. (2) (x,y)=(0,3) のとき $x^3-5x=3\neq y$ なので、点 (0,5) は $y=x^3-5x$ のグラフに属さない. (3) (x,y)=(1,4) のとき $x^3-5x=-4\neq y$ なので、点 (0,5) は $y=x^3-5x$ のグラフに属さない. (4) (x,y) = (2,-2) のとき $x^3 - 5x =$ y なので、点 (2,-2) は $y = x^3 - 5x$ のグラフに属

 $| \mathbb{B} | 4.4.1 | xy$ 座標平面の以下の 4 点について、変数 x の関数 $y = x^3 - 5x$ のグ ラフに属すかどうか調べよ. (1) (x,y)=(-1,6) のとき $x^3-5x=4\neq y$ なので、点 (-1,6) は $y = x^3 - 5x$ のグラフに属さない. (2) (x,y)=(0,3) のとき $x^3-5x=3\neq y$ なので、点 (0,5) は $y=x^3-5x$ のグラフに属さない. (3) (x,y)=(1,4) のとき $x^3-5x=-4\neq y$ なので、点 (0,5) は $y=x^3-5x$ (4) (x,y)=(2,-2) のとき $x^3-5x=-2=y$ なので、点 (2,-2) は $y = x^3 - 5x$ のグラフに属す. 終

のグラフに属さない.

 $y \wedge$ y = f(x)ua \boldsymbol{x}





xy 座標平面において、変数 x の $y \wedge$ 関数 y = f(x) のグラフに属す点で x 座標が a である点を求める. 実数 f(a)y について、x 座標が a である点 (a,y) が関数 y=f(x) のグラフに属 すとすると、y = f(a) . よって、関数 y = f(x) のグラフの点で x 座標が auaxである点の y 座標は f(a) である.

x 座標が 3 である点 P を求める.

例 xy 座標平面において、変数 x の関数 $y=2x^2-4x$ のグラフに属す点で

 $| \overline{M} | xy$ 座標平面において,変数 x の関数 $y=2x^2-4x$ のグラフに属す点で x 座標が 3 である点 P を求める. 点 P の x 座標が 3 なので、ある実数 yについて P = (3,y) . この点 P が関数 $y = 2x^2 - 4x$ のグラフに属すので, 終

$$y = 2 \cdot 3^2 - 4 \cdot 3 = 6$$
 . よって $P = (3,6)$.

 $[104.4.2] \ xy$ 座標平面において、変数 x の関数 $y=2x^3-x^2+7x$ のグラフに 属す点でx 座標が-2 である点A を求めよ. 点 A の x 座標が -2 なので、ある実数 y について A = (-2,y) . この点 A

が関数 $y = 2x^3 - x^2 + 7x$ のグラフに属すので. u =

. 故に A =

問4.4.2 xy 座標平面において,変数 x の関数 $y=2x^3-x^2+7x$ のグラフに属す点で x 座標が -2 である点 A を求めよ. 点 A の x 座標が -2 なので,ある実数 y について A=(-2,y) .この点 A が関数 $y=2x^3-x^2+7x$ のグラフに属すので, $y=2(-2)^3-(-2)^2+7(-2)=-34$. 故に A=(-2,-34) .

xy 座標平面において、変数 x の関数 y=f(x) のグラフの点で y 座標がa である点を求めたいとする.

xy 座標平面において、変数 x の関数 y = f(x) のグラフの点で y 座標が a である点を求めたいとする. 実数 x について, y 座標が a である点 (x,a)が関数 y = f(x) のグラフに属すとすると, a = f(x).

xy 座標平面において、変数 x の関数 y=f(x) のグラフの点で y 座標が a である点を求めたいとする. 実数 x について, y 座標が a である点 (x,a)が関数 y = f(x) のグラフに属すとすると、 a = f(x) . x に関する方程式 a = f(x) の実数解が、関数 y = f(x) のグラフの点で y 座標が a である点

の x 座標である.

x 座標および y 座標は実数なので、x に関する方程式 a=f(x) の解が虚

数であるときは x 座標にならない.

でy座標が-4である点Qを求める.

例 xy 座標平面において、変数 x の関数 $y=x^2-7x+6$ のグラフに属す点

例 xy 座標平面において,変数 x の関数 $y=x^2-7x+6$ のグラフに属す点で y 座標が -4 である点 Q を求める.点 Q の y 座標が -4 なので,ある実数 x について Q=(x,-4) .

例
$$xy$$
 座標平面において、変数 x の関数 $y=x^2-7x+6$ のグラフに属す点で y 座標が -4 である点 Q を求める. 点 Q の y 座標が -4 なので、ある実数 x について $Q=(x,-4)$. この点 Q が関数 $y=x^2-7x+6$ のグラフに属すので、 $-4=x^2-7x+6$, $x^2-7x+10=0$, $(x-2)(x-5)=0$,

x = 2 **state** x = 5.

で
$$y$$
 座標が -4 である点 Q を求める. 点 Q の y 座標が -4 なので、ある 実数 x について $Q=(x,-4)$. この点 Q が関数 $y=x^2-7x+6$ のグラ

 $| \overline{M} | xy$ 座標平面において,変数 x の関数 $y=x^2-7x+6$ のグラフに属す点

フに属すので、 $-4=x^2-7x+6$ 、 $x^2-7x+10=0$ 、(x-2)(x-5)=0 、

$$x=2$$
 または $x=5$. よって, $\mathbf{Q}=(2,-4)$ または $\mathbf{Q}=(5,-4)$.

問 4.4.3 xy 座標平面において,変数 x の関数 $y=x^2-8x+9$ のグラフに属す点で y 座標が -6 である点 P を求めよ. 点 P の y 座標が -6 なので,ある実数 x について P=(x,-6) . この点 P が関数 $y=x^2-8x+9$ のグラフに属すので, , =0 , ()()=0 , x= または x= .故に,

P = = = = = .

問 4.4.3 xy 座標平面において,変数 x の関数 $y=x^2-8x+9$ のグラフに属す点で y 座標が -6 である点 P を求めよ. 点 P の y 座標が -6 なので,ある実数 x について P=(x,-6) . この点 P が関数 $y=x^2-8x+9$ のグラフに属すので, $-6=x^2-8x+9$, $x^2-8x+15=0$, (x-3)(x-5)=0 , x=3 または x=5 . 故に,

終

P = (3, -6) または P = (5, -6).

本書では、xy 座標平面において、x 座標及び y 座標は実数である。虚数は

xy 座標平面の点の x 座標や y 座標にならない.

本書では、xy 座標平面において、x 座標及び y 座標は実数である。虚数は xy 座標平面の点の x 座標や y 座標にならない。 例 xy 座標平面において、変数 x の関数 $y=2x^2-5x+7$ のグラフに属す点で y 座標が 3 である点 P を求める。

本書では、xy 座標平面において、x 座標及び y 座標は実数である。虚数は xy 座標平面の点の x 座標や y 座標にならない. $| \overline{M} | xy$ 座標平面において,変数 x の関数 $y=2x^2-5x+7$ のグラフに属す点

でy 座標が3 である点P を求める.点P のy 座標が3 なので、ある実数

x について P = (x,3) . この点 P が関数 $y = 2x^2 - 5x + 7$ のグラフに属す

ので、 $3=2x^2-5x+7$, $2x^2-5x+4=0$; この x に関する 2 次方程式は、

判別式の値が $(-5)^2-4\cdot 2\cdot 4<0$ なので、解が虚数である.

本書では、xy 座標平面において、x 座標及び y 座標は実数である。虚数は xy 座標平面の点の x 座標や y 座標にならない. $| \overline{M} | xy$ 座標平面において,変数 x の関数 $y=2x^2-5x+7$ のグラフに属す点

でy 座標が3 である点P を求める.点P のy 座標が3 なので、ある実数

x について P = (x,3) . この点 P が関数 $y = 2x^2 - 5x + 7$ のグラフに属す

ので、 $3=2x^2-5x+7$, $2x^2-5x+4=0$; この x に関する 2 次方程式は、

判別式の値が $(-5)^2-4\cdot 2\cdot 4<0$ なので、解が虚数である. 虚数は x 座標に

ならないので、P の x 座標は無い.

本書では、xy 座標平面において、x 座標及び y 座標は実数である。虚数は xy 座標平面の点の x 座標や y 座標にならない. |M| xu 座標平面において、変数 x の関数 $y=2x^2-5x+7$ のグラフに属す点

でy 座標が3 である点P を求める. 点P のy 座標が3 なので、ある実数

x について P = (x,3) . この点 P が関数 $y = 2x^2 - 5x + 7$ のグラフに属す ので、 $3=2x^2-5x+7$, $2x^2-5x+4=0$; この x に関する 2 次方程式は、

判別式の値が $(-5)^2-4\cdot 2\cdot 4<0$ なので、解が虚数である. 虚数は x 座標に

ならないので、P の x 座標は無い. よって $y=2x^2-5x+7$ のグラフに属す

終

点でy座標が3である点Pは無い.

問4.4.4 xy 座標平面において,変数 x の関数 $y=3x^2-7x+6$ のグラフに属す点で y 座標が 1 である点 Q を求めよ. 点 Q の y 座標が 1 なので,ある実数 x について P=(x,1) . この点 P が関数 $y=3x^2-7x+6$ のグラフに属すので,

問 4.4.4 xy 座標平面において、変数 x の関数 $y=3x^2-7x+6$ のグラフに属す点で y 座標が 1 である点 Q を求めよ. 点 Q の y 座標が 1 なので、ある実数 x について P=(x,1) . この点 P が関数 $y=3x^2-7x+6$ のグラフに属すので、 $1=3x^2-7x+6$ 、 $3x^2-7x+5=0$;この x に関する 2 次方程式は、判別式の値が $(-7)^2-4\cdot3\cdot5<0$ なので解は虚数である.虚数は x 座標にならないので、P

の x 座標は無い. よって $y = 3x^2 - 7x + 6$ のグラフに属す y 座標が 1 である

点 Q は無い.

終