5.1 不等式の性質

実数の大小関係に関関する次の法則が成り立つ.. 法則 5.1.1 任意の実数 a,b,c について, a < b かつ b < c ならば, a < c .

法則 $\mathbf{5.1.1}$ 任意の実数 a,b,c について,a < b かつ b < c ならば,

a < b かつ b < c ならば. a < c : a < b かつ b < c ならば. a < c : a < b かつ b < c ならば, a < c. 証明 例として "a < b かつ b < c ならば a < c"を証明する. 実数 a,b,c について a < b かつ $b \le c$ と仮定する. $b \le c$ なので、法則 1.5.1 により、b < c または b = c 、a < b なので、b < c のとき法則 5.1.1 b < c のときも b = c のときも a < c. (証明終了) (法則 1.5.1) 任意の実数 a,b について, $a \le b \iff a < b$ または a = b . (法則 5.1.1) 任意の実数 a,b,c について、 a < b かつ b < c ならば、 a < c .

定理5.1.1 任意の実数 a,b,c について以下のことが成り立つ:

定理 5.1.2 任意の実数 a,b,c,d について, a < b かつ c < d ならば a + c < b + d. a < b かつ c < d ならば a + c < b + d. 証明 例として "a < b かつ c < d ならば a + c < b + d" を証明する. a < b かつ c < d と仮定する. a < b なので、法則 1.5.3 により a+c < b+c. また、c < d なので、法則 1.5.3 により c+b < d+b 、つまり b+c < b+d. このように、a+c< b+c かつ b+c< b+d なので、法則 5.1.1 により (証明終了) a+c < b+d. (法則 1.5.3) 任意の実数 a,b,c について, a < b ならば a+c < b+c . (法則 5.1.1) 任意の実数 a,b,c について, a < b かつ b < c ならば, a < c .

実数 a,b,c に対して、"a < b かつ b < c" ということを a < b < c というように、" $a \le b$ かつ $b \le c$ " ということを $a \le b \le c$ というように書き表す.

$$0 \le a \le b$$
 かつ $0 \le c \le d$ ならば $ac \le bd$. 証明 例として " $0 \le a \le b$ かつ $0 \le c \le d$ ならば $ac \le bd$ "を証明する. $0 \le a \le b$ かつ $0 \le c \le d$ と仮定する. $a \le b$ かつ $c \ge 0$ なので,定理 1.5.7により $ac \le bc$. また, $c \le d$ かつ $b \ge 0$ なので,定理 1.5.7により $cb \le db$. このように, $ac \le bc$ かつ $bc \le bd$ なので,定理 5.1.1により $ac \le bd$. (証明終了) (定理 1.5.7) 任意の実数 a,b,c について, $a \le b$ かつ $c \ge 0$ ならば, $ac \le bc$. (定理 5.1.1) 任意の実数 a,b,c について, $a \le b$ かつ $b \le c$ ならば, $ac \le bc$.

0 < a < b かつ 0 < c < d ならば ac < bd.

定理 5.1.3 任意の実数 a,b,c,d について,

$$0 \le a < b$$
 ならば $a^2 < b^2$, $0 \le a \le b$ ならば $a^2 \le b^2$. 証明 例として $0 \le a < b$ ならば $a^2 < b^2$ を証明する. 定理 $5.1.3$ により,任意の実数 a と b とについて, $0 \le a < b$ かつ $0 \le a < b$ ならば, $aa < bb$; つまり, $0 \le a < b$ ならば $a^2 < b^2$. (証明終了)

定理5.1.4 任意の実数 a と b とについて.

ac < bd.

い;例えば,
$$a=2$$
 , $b=-3$ とすると, $a^2 < b^2$ であるが $a \not< b$ である.

実数 a と b とについて、 $a^2 < b^2$ であるなら a < b であるとは限らな

い;例えば,
$$a=2$$
 , $b=-3$ とすると, $a^2 < b^2$ であるが $a \not< b$ である.
しかし, $b \ge 0$ であれば, $a^2 < b^2$ であるなら $a < b$ である.

実数 a と b とについて, $a^2 < b^2$ であるなら a < b であるとは限らな

実数 a と b とについて、 $a^2 < b^2$ であるなら a < b であるとは限らな い;例えば, a=2, b=-3 とすると, $a^2 < b^2$ であるが $a \not< b$ である. しかし, b>0 であれば, $a^2 < b^2$ であるなら a < b である. 定理5.1.5 任意の実数 a と b とについて以下のことが成り立つ:

 $a^2 < b^2$ かつ b > 0 ならば. a < b:

 $a^2 < b^2$ かつ b > 0 ならば. a < b.

定理 $\mathbf{5.1.5}$ 任意の実数 a と b とについて以下のことが成り立つ: $a^2 < b^2$ かつ b > 0 ならば, a < b; $a^2 < b^2$ かつ b > 0 ならば、 a < b . 証明 " $a^2 < b^2$ かつ b > 0 ならば, $a \le b$ " を証明する. b>0 と仮定する. a>b ならば, 仮定 0<b より 0<b<a なので, 定理5.1.4により $b^2 < a^2$; つまり, a > b ならば $a^2 > b^2$. 対偶をとると, $a^2 > b^2$ ならば a > b. 法則 1.5.2 により. $a^2 > b^2 \iff a^2 < b^2$, $a > b \iff a < b$, 従って、 $a^2 < b^2$ ならば a < b . つまり,b>0 とすると, $a^2\leq b^2$ ならば $a\leq b$.故に, $a^2\leq b^2$ かつ b>0 ならば, a< b. (証明終了) (定理 5.1.4) 任意の実数 a,b について, 0 < a < b ならば $a^2 < b^2$. (法則 1.5.2) 任意の実数 a,b について, $a > b \iff a \leq b$.

例えば、
$$3$$
 と 5 とについて 3 $<$ 5 であるが、それらの逆数 $\frac{1}{3}$ と $\frac{1}{5}$ とについては $\frac{1}{3}$ $>$ $\frac{1}{5}$ である.

例えば、
$$3$$
 と 5 とについて 3 < 5 であるが、それらの逆数 $\frac{1}{3}$ と $\frac{1}{5}$ とについては $\frac{1}{3}$ > $\frac{1}{5}$ である.一般的に次の定理が成り立つ.
定理 $5.1.6$ 任意の実数 a と b とについて、

$$0 < a < b$$
 ならば $rac{1}{a} > rac{1}{b}$,

$$0 < a < b$$
 ならは $rac{1}{a} > rac{1}{b}$, $0 < a \leq b$ ならば $rac{1}{a} \geq rac{1}{b}$.

0 < a < b ならば $\frac{1}{a} > \frac{1}{b}$, $0 < a \le b$ tot $\frac{1}{a} \ge \frac{1}{b}$. 証明 例として "0 < a < b ならば $\frac{1}{a} > \frac{1}{b}$ "を証明する. 0 < a < b と仮 定する. a>0 , 法則 ${\bf 5.1.1}$ により b>0 , 定理 ${\bf 1.5.8}$ により ab>0 , 従って 定理 1.5.13 により $\frac{1}{ab} > 0$. a < b かつ $\frac{1}{ab} > 0$ なので、法則 1.5.3 により $a\frac{1}{ab} < b\frac{1}{ab}$, $a\frac{1}{b} < \frac{1}{a}$. (証明終了) (法則 5.1.1) 任意の実数 a,b,c について, a < b かつ b < c ならば, a < c . (定理1.5.8) 任意の実数 a,b について, a>0 かつ b>0 ならば, ab>0 . (定理1.5.13) 任意の実数 a について, a>0 ならば $\frac{1}{a}>0$. (法則 1.5.3) 任意の実数 a,b,c について、 a < b かつ c > 0 ならば、 ac < bc .

定理5.1.6 任意の実数 a と b とについて.

変数 x に関する不等式とは、x の値に関する条件を表す不等式のことである。 1.9 節で述べたように虚数には大小関係がないので、特に断りがない限り、不等式に表れる変数は実数を表す。それで、"実数を表す変数 x に関する不等式"というべきところを多くは"変数 x に関する不等式"と略す。