5.補遺1 分数式が現れる不等式の解法

分数式が現れる不等式のうち簡単なものを解く.

例 変数
$$x$$
 に関する不等式 $\frac{3x}{x-4} < 2$ を解く.

例 変数 x に関する不等式 $\frac{3x}{x-4} < 2$ を解く. 左辺の分数式の分母 x-4 を両辺に掛けて分母を払うには問題がある.

例 変数 x に関する不等式 $\frac{3x}{x-4} < 2$ を解く. 左辺の分数式の分母 x-4 を両辺に掛けて分母を払うには問題がある. 実数 a,b,c について, a < b ならば, $\begin{cases} c > 0 \text{ のとき } ac < bc \end{cases}$

(c < 0) $C = ac > 0c$

例 変数 x に関する不等式 $\frac{3x}{x-4} < 2$ を解く. 左辺の分数式の分母 x-4 を 両辺に掛けて分母を払うには問題がある. 実数 a,b,c について, a < b ならば、 $\begin{cases} c > 0 \text{ のとき } ac < bc \\ c < 0 \text{ のとき } ac > bc \end{cases}$.

このことより,不等式 $\frac{3x}{x-4} < 2$ の両辺に x-4 を掛けると, x-4>0 のときは 3x < 2(x-4) であり, x-4<0 のときは 3x > 2(x-4) である.

 $\boxed{\textbf{例}}$ 変数 x に関する不等式 $\frac{3x}{x-4} < 2$ を解く. 左辺の分数式の分母 x-4 を 両辺に掛けて分母を払うには問題がある. 実数 a,b,c について, a < b ならば、 $\begin{cases} c > 0 \text{ のとき } ac < bc \\ c < 0 \text{ のとき } ac > bc \end{cases}$. このことより,不等式 $\frac{3x}{x-4} < 2$ の両辺に x-4 を掛けると, x-4>0 の ときは 3x < 2(x-4) であり、x-4 < 0 のときは 3x > 2(x-4) である. 予め x-4>0 か x-4<0 かは分からないので、不等式 $\frac{3x}{x-4}<2$ の両 辺に x-4 を掛けたとき 3x < 2(x-4) なのか 3x > 2(x-4) なのか分から ない. 例えば不等式 $\frac{x+4}{3} < 2$ では、3>0 なので、 $\frac{x+4}{3} < 2$ の両辺に 3 を 掛けると x+4<6.

例 変数 x に関する不等式 $\frac{3x}{x-4} < 2$ を解く. 左辺の分数式の分母 x-4 を 両辺に掛けて分母を払うには問題がある. 実数 a,b,c について, a < b ならば、 $\begin{cases} c > 0 \text{ のとき } ac < bc \end{cases}$ このことより,不等式 $\frac{3x}{x-4} < 2$ の両辺に x-4 を掛けると, x-4>0 の ときは 3x < 2(x-4) であり、x-4 < 0 のときは 3x > 2(x-4) である.

そうは 3x < 2(x-4) であり、x-4 < 0 のとさは 3x > 2(x-4) である. 予め x-4 > 0 か x-4 < 0 かは分からないので、不等式 $\frac{3x}{x-4} < 2$ の両辺に x-4 を掛けたとき 3x < 2(x-4) なのか 3x > 2(x-4) なのか分からない.そのため別の解法を考える.

与えられた不等式 $\frac{3x}{x-4} < 2$ を次のように同値変形する:

 $\frac{3x}{x-4} < 2 \iff \frac{3x}{x-4} - 2 < 0$.

$$\frac{3x}{x-4} < 2 \iff \frac{3x}{x-4} - 2 < 0.$$

ここで

なので.

与えられた不等式 $\frac{3x}{x-4} < 2$ を次のように同値変形する:

$$\frac{3x}{x-4} - 2 = \frac{3x}{x-4} - \frac{2(x-4)}{x-4} = \frac{3x-2(x-4)}{x-4} = \frac{x+8}{x-4}$$

$$\frac{3x}{x-4} - 2 = \frac{3x}{x-4} - \frac{2(x-4)}{x-4} =$$

$$\frac{3x}{x-4} - 2 = \frac{3x}{x-4} - \frac{2(x-4)}{x-4} =$$

$$\frac{1}{x-4} - 2 = \frac{1}{x-4} - \frac{1}{x-4} = \frac{1}{x-4}$$

$$2 = \frac{1}{x-4} - \frac{1}{x-4} = \frac{1}{x-4}$$

 $\frac{3x}{x-4} < 2 \iff \frac{x+8}{x-4} < 0$.

 $\frac{3x}{x-4} < 2 \iff \frac{3x}{x-4} - 2 < 0$.

$$\frac{3x}{x-4} - 2 = \frac{3x}{x-4} - \frac{2(x-4)}{x-4} = \frac{3x-2(x-4)}{x-4} = \frac{x+8}{x-4}$$

与えられた不等式 $\frac{3x}{x}$ < 2 を次のように同値変形する:

なので. $\frac{3x}{x-4} < 2 \iff \frac{x+8}{x-4} < 0$.

$$\frac{3x}{x-4} < 2 \iff$$

$$\frac{3x}{x-4} < 2 \iff$$

$$\Rightarrow \frac{x+8}{4} < 0$$
.

$$\frac{x+8}{x-4} < 0.$$

$$\frac{3}{4} < 0$$
.

$$x-4$$
 $x-4$ 与えられた不等式 $\frac{3x}{x-4} < 2$ と同値な不等式 $\frac{x+8}{x-4} < 0$ を解けばよい.

 $\frac{3x}{x-4} < 2 \iff \frac{3x}{x-4} - 2 < 0$.

与えられた不等式 $\frac{3x}{x}$ < 2 を次のように同値変形する:

$$\frac{3x}{x-4} - 2 = \frac{3x}{x-4} - \frac{2(x-4)}{x-4} = \frac{3x-2(x-4)}{x-4} = \frac{x+8}{x-4}$$
なので、

ここで

$$\frac{3x}{x-4} < 2 \iff \frac{x+8}{x-4} < 0.$$

$$rac{3x}{x-4} < 2 \iff$$
れた不等式 $rac{3x}{x-4} < 2$ と同値な

$$rac{1}{x-4} < 2 \iff rac{1}{x-4} < 0$$
 . 与えられた不等式 $rac{3x}{x-4} < 2$ と同値な不等式 $rac{x+8}{x-4} < 0$ を解けばよい. そ

$$\frac{1}{x-4} < 2 \iff$$
 ななななる $\frac{3x}{x-4} < 2$ に同値なる

$$\begin{array}{ccc}
x - 4 & x - 4 \\
\Rightarrow & \frac{x + 8}{3} < 0
\end{array}$$

$$\frac{x+8}{4} < 0$$
.

$$\frac{x+8}{x-4} < 0.$$

$$\frac{\overline{x-4}}{x-4} < 0$$
 .

等式
$$\frac{x+8}{}$$
 < 0 を解けばより

$$\frac{x+8}{x-4} < 0$$
 を解けばよい.

$$\frac{x+\delta}{x-4} < 0$$
 を解けばよい.

$$\frac{1}{r-4} < 0$$
 を解けばよい.

$$x-4$$
 $x-4$ $x-4$ の他の符号を調べる.

 $\frac{3x}{x-4} < 2 \iff \frac{3x}{x-4} - 2 < 0.$

ここで

与えられた不等式 $\frac{3x}{x}$ < 2 を次のように同値変形する:

$$rac{3x}{x-4}-2=rac{3x}{x-4}-rac{2(x-4)}{x-4}=rac{3x-2(x-4)}{x-4}=rac{x+8}{x-4}$$
なので,
$$rac{3x}{x-4}<2\iffrac{x+8}{x-4}<0\;.$$
 与えられた不等式 $rac{3x}{x-4}<2$ と同値な不等式 $rac{x+8}{x-4}<0$ を解けばよい.そ

のために、次のような表を作って分数式 $\frac{x+8}{x-4}$ の値の符号を調べる. x=4 のとき、x-4=0 なので、分数式 $\frac{x+8}{x-4}$ の値は無い.

分数式 $\frac{x+8}{x-4}$ の値の符号を調べる.

x の値	x < -8	x = -8	-8 < x < 4	x = 4	4 < x
x+8 の値の符号	_	0	+	+	+
x-4 の値の符号	_	_	_	0	+
$\frac{x+8}{x-4}$ の値の符号	+	0		値なし	+

分数式 $\frac{x+8}{x-4}$ の値の符号を調べる.

x の値	x < -8	x = -8	-8 < x < 4	x = 4	4 < x
x+8 の値の符号	_	0	+	+	+
x-4 の値の符号	_	_	_	0	+
$rac{x+8}{x-4}$ の値の符号	+	0	_	値なし	+

この表より,

$$\frac{x+8}{x-4} < 0 \iff -8 < x < 4.$$

分数式 $\frac{x+8}{x-4}$ の値の符号を調べる.

$egin{array}{c ccccccccccccccccccccccccccccccccccc$	x の担	x < -8	x = -8	-8 < x < 4	x = 4	4 < x
	x+8 の値の符号	_	0	+	+	+
$\left \begin{array}{c c} x+8 \\ x-4 \end{array} \right $ の値の符号 $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	x-4 の値の符号	-	-	_	0	+
w 1	$rac{x+8}{x-4}$ の値の符号	+	0	_	値なし	+

「
$$x-4$$
 の他の行写 $+$ 0 $-$ 1世なし $+$ この表より, $x+8$

 $\frac{x+8}{x-4}<0\iff -8< x<4\ .$ 故に,与えられた不等式 $\frac{3x}{x-4}<2$ を解くと -8< x<4 .

故に,与えられた不等式
$$rac{3x}{x-4} < 2$$
 を解くと $-8 < x < 4$.

数に,与えられた不等式
$$\frac{3x}{x-4} < 2$$
 を解くと $-8 < x < 4$.

例 変数
$$x$$
 に関する不等式 $\frac{2x-13}{2x-5} \leq 4$ を解く.

例 変数
$$x$$
 に関する不等式 $\frac{2x-13}{2x-5} \le 4$ を解く.
$$\frac{2x-13}{2x-5}-4=\frac{2x-13-4(2x-5)}{2x-5}=\frac{-6x+7}{2x-5}=-3\cdot\frac{x-\frac{7}{6}}{x-\frac{5}{2}}\;,$$

例 変数
$$x$$
 に関する不等式 $\frac{2x-13}{2x-5} \le 4$ を解く.
$$\frac{2x-13}{2x-5}-4=\frac{2x-13-4(2x-5)}{2x-5}=\frac{-6x+7}{2x-5}=-3\cdot\frac{x-\frac{7}{6}}{x-\frac{5}{2}}\;,$$

$$\frac{2x-13}{2x-5} \le 4 \iff \frac{2x-13}{2x-5} - 4 \le 0 \iff -3 \cdot \frac{x-\frac{7}{6}}{x-\frac{5}{2}} \le 0$$

従って

$$\frac{2x}{2c}$$

$$\frac{2x}{2x}$$

$$\frac{2x}{2x}$$

$$\frac{2x}{2a}$$

$$\frac{2x}{2}$$

$$\frac{x-}{x-}$$

 $\iff \frac{x - \frac{7}{6}}{x - \frac{5}{2}} \ge 0 .$

例 変数
$$x$$
 に関する不等式 $\frac{2x-13}{2x-5} \le 4$ を解く.
$$\frac{2x-13}{2x-5} - 4 = \frac{2x-13-4(2x-5)}{2x-5} = \frac{-6x+7}{2x-5} = -3 \cdot \frac{x-\frac{7}{6}}{x-\frac{5}{2}} ,$$
 従って
$$\frac{2x-13}{2x-5} \le 4 \iff \frac{2x-13}{2x-5} - 4 \le 0 \iff -3 \cdot \frac{x-\frac{7}{6}}{x-\frac{5}{2}} \le 0$$

$$\iff \frac{x-\frac{7}{6}}{x-\frac{5}{2}} \ge 0 .$$

不等式 $\frac{x-\frac{7}{6}}{x-\frac{5}{2}} \ge 0$ を解く.

例 変数 x に関する不等式 $\frac{2x-13}{2x-5} \le 4$ を解く. $\frac{2x-13}{2x-5}-4=\frac{2x-13-4(2x-5)}{2x-5}=\frac{-6x+7}{2x-5}=-3\cdot\frac{x-\frac{7}{6}}{x-\frac{5}{2}},$ 従って $\frac{2x-13}{2x-5} \le 4 \iff \frac{2x-13}{2x-5} - 4 \le 0 \iff -3 \cdot \frac{x-\frac{7}{6}}{x-\frac{5}{2}} \le 0$

 $\Leftrightarrow \frac{x-\frac{7}{6}}{x-\frac{5}{2}}\geq 0$. 不等式 $\frac{x-\frac{7}{6}}{x-\frac{5}{2}}\geq 0$ を解く、分数式 $\frac{x-\frac{7}{6}}{x-\frac{5}{2}}$ の値の符号を調べて表を作る.

この表より,
$$\frac{x-\frac{5}{2}}{x-\frac{5}{2}} \geq 0 \iff x \leq \frac{7}{6} \ \sharp \, \hbar \, \mathrm{th} \ x > \frac{5}{2} \ .$$

$$x - \frac{5}{2}$$

この表より,
$$\frac{x-\frac{5}{2}}{5} \geq 0 \iff x \leq \frac{7}{6} \ \sharp \text{ たは} \ x > \frac{5}{2} \ .$$

 $\frac{x - \frac{7}{6}}{x - \frac{5}{2}} \ge 0 \iff x \le \frac{7}{6}$ または $x > \frac{5}{2}$.

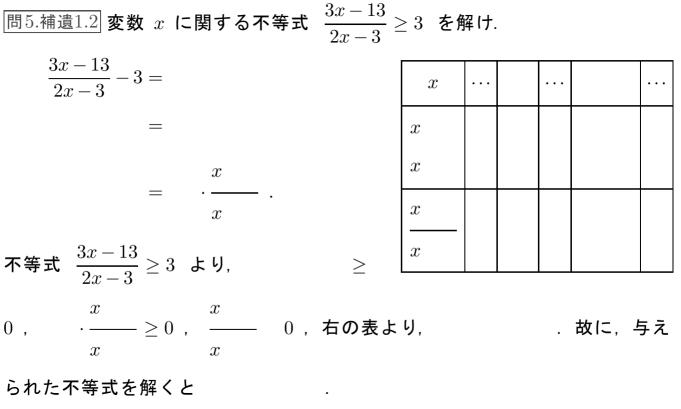
この表より,
$$\frac{x-\frac{7}{6}}{x-\frac{5}{2}}\geq 0\iff x\leq \frac{7}{6}\ \ \text{stat}\ \ x>\frac{5}{2}\ .$$
 故に,与えられた不等式を解くと, $x\leq \frac{7}{6}\ \ \text{stat}\ \ x>\frac{5}{2}\ .$

 $\frac{2x-13}{2x-5} \le 4 ,$ $\frac{2x-13}{2x-5} - 4 \le 0 ,$

しばしば次の様に同値記号を省いて記す:

$$-3 \cdot \frac{x - \frac{7}{6}}{x - \frac{5}{2}} \le 0 ,$$

$$\frac{x - \frac{7}{6}}{x - \frac{5}{2}} \ge 0 ,$$


 $x \leq \frac{7}{6}$ または $x > \frac{5}{2}$. 同値記号を省いても同値変形であることに注意すること.

佟

問 5 .補遺 1.1 変数 x に関する不等式 $\frac{5}{x+1} \le 2$	を解け	+ .		
$\frac{5}{x+1} - 2 = =$		ı		
x + 1 x	x	• • •	• • •	• • •
$=$ $\cdot {x}$.	x			
不等式 $\frac{5}{x+1} \le 2$ より, ≤ 0 ,	x			
x	$\frac{x}{x}$			
≤0, 0, 右の表より, 故に, 与	x			
えられた不等式を解くと、				

10.5 | 問5. 補遺1.1 変数 x に関する不等式 $\frac{5}{x+1} \le 2$ を解け. $\frac{5}{x+1} - 2 = \frac{5 - 2(x+1)}{x+1} = -\frac{2x-3}{x+1}$ 不等式 $\frac{5}{x+1} \le 2$ より、 $\frac{5}{x+1} - 2 \le 0$ 、 $-2 \cdot \frac{x - \frac{3}{2}}{x + 1} \le 0$, $\frac{x - \frac{3}{2}}{x + 1} \ge 0$, 右の表よ

$$-2\cdot \frac{x-\frac{3}{2}}{x+1} \leq 0$$
 , $\frac{x-\frac{3}{2}}{x+1} \geq 0$, 右の表よ $\left\lfloor \frac{x-\frac{1}{2}}{x+1} \right\rfloor + \left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor$

<u>問5.補遺1.2</u> 変数 x に関する不等式 $\frac{3x-13}{2x-3} \ge 3$ を解け. $\frac{3x-13}{2x-3}-3=\frac{3x-13-3(2x-3)}{2x-3}$ $=-\frac{3x+4}{2x-3}$ $= -\frac{3}{2} \cdot \frac{x + \frac{4}{3}}{x - \frac{3}{2}} .$ 不等式 $\frac{3x-13}{2x-3} \ge 3$ より、 $\frac{3x-13}{2x-3}-3 \ge$ $0 \ , \quad -\frac{3}{2} \cdot \frac{x+\frac{4}{3}}{x-\frac{3}{2}} \geq 0 \ , \quad \frac{x+\frac{4}{3}}{x-\frac{3}{2}} \leq 0 \ , \quad 右の表より, \quad -\frac{4}{3} \leq x < \frac{3}{2} \ . \quad 故に、与え$ られた不等式を解くと $-rac{4}{3} \le x < rac{3}{2}$. 終 問5.補遺1.3 変数 x に関する不等式 $\frac{7x-8}{3x+2} \ge 1$ を解け. $\frac{7x-8}{3x+2}-1 =$ 不等式 $\frac{7x-8}{3x+2} \ge 1$ より, $\cdot \frac{x}{----} \geq 0$, $\frac{x}{----}$ 0 , 右の表より, . 故に、与えられ た不等式を解くと.

問5.補遺1.3 変数 x に関する不等式 $\frac{7x-8}{3x+2} \ge 1$ を解け. $\frac{7x-8}{3x+2}-1 = \frac{4x-10}{3x+2} = \frac{4}{3} \cdot \frac{x-\frac{5}{2}}{x+\frac{3}{2}} .$

等式
$$\dfrac{7x-8}{3x+2}\geq 1$$
 より、 $\dfrac{7x-8}{3x+2}-1\geq 0$ 、 $\dfrac{x-\frac{5}{2}}{x^2}\geq 0$ たの表より

$$rac{4}{3}\cdotrac{x-rac{7}{2}}{x+rac{3}{2}}\geq 0$$
 , $rac{x-rac{7}{2}}{x+rac{3}{2}}\geq 0$, 右の表より, $x<-rac{2}{3}$ または $x\geqrac{5}{2}$. 故に, 与えられ

た不等式を解くと、 $x<-\frac{2}{3}$ または $x\geq \frac{5}{2}$.

$$\frac{7x-8}{3x+2}-1=\frac{4x-10}{3x+2}=\frac{4}{3}\cdot\frac{x-\frac{5}{2}}{x+\frac{3}{2}}\ .$$
不等式 $\frac{7x-8}{3x+2}\geq 1$ より、 $\frac{7x-8}{3x+2}-1\geq 0$ 、
$$\frac{4}{3}\cdot\frac{x-\frac{5}{2}}{x+\frac{3}{2}}\geq 0$$
 , $\frac{x-\frac{5}{2}}{x+\frac{3}{2}}\geq 0$, 右の表より,
$$x<-\frac{2}{3}$$
 または $x\geq\frac{5}{2}$. 故に、与えられ

終