6. 拡充3 3次不等式の解法

3次不等式を解くためには、3次式を実数係数の範囲で因数分解することが基本になります。

$$3\geq 0$$
 を解く. $y=1$ のとき $6y^3+y^2-10y+3=0$ なので、因数定理より、整式 $6y^3+y^2-10y+3$ は $y-1$ で割り切れる:
$$6y^3+y^2-10y+3=(y-1)(6y^2+7y-3)\;.$$

y に関する 2 次方程式 $6y^2+7y-3=0$ を解くと $y=\frac{1}{3},-\frac{3}{2}$, 従って, y の

例 変数 y に関する 3 次不等式 $6y^3+y^2-10y+3>0$ 及び $6y^3+y^2-10y+3$

$$2$$
 次式 $6y^2+7y-3$ は実数係数の範囲で因数分解できて

$$6y^2 + 7y - 3 = 6\left(y - \frac{1}{3}\right)\left(y + \frac{3}{2}\right) .$$

$$6y^2 + 7y - 3 = 6\left(y - \frac{1}{3}\right)\left(y + \frac{3}{2}\right)$$
.

$$0y + y - 3 = 0 \left(y - \frac{\pi}{3}\right) \left(y + \frac{\pi}{2}\right)$$
 .
対に、 y の 3 次式 $6y^3 + y^2 - 10y + 3$ を実数係数の範囲で因数分解すると

はに、
$$y$$
 の 3 次式 $6y^3+y^2-10y+3$ を実数係数の範囲で因数分解すると

故に、y の 3 次式 $6y^3 + y^2 - 10y + 3$ を実数係数の範囲で因数分解すると

$$y$$
 の 3 次式 $6y^3+y^2-10y+3$ を実数係数の範囲で因数分解すると

$$x$$
 の 3 次式 $6y^3+y^2-10y+3$ を実数係数の範囲で因数分解すると

-,
$$y$$
 の 3 次式 $6y^- + y^- - 10y + 3$ を美数係数の配置で函数分解すると

$$6y^3 + y^2 - 10y + 3 = 6(y - 1)\left(y - \frac{1}{3}\right)\left(y + \frac{3}{2}\right).$$

の値の符号を調べる. *u* の値

y の値について場合分けして、 $6y^3+y^2-10y+3=6(y-1)\left(y-\frac{1}{3}\right)\left(y+\frac{3}{2}\right)$

この表より.

不等式 $6y^3+y^2-10y+3>0$ を解くと $-\frac{3}{2}< y<\frac{1}{3}$ または y>1,

不等式 $6y^3+y^2-10y+3\geq 0$ を解くと $-\frac{3}{2}\leq y\leq \frac{1}{3}$ または $y\geq 1$.

不等式 $x^3+3\geq \frac{x}{2}(5x+1)$ を整理すると $2x^3-5x^2-x+6\geq 0$, 左辺を因

問6.拡充3.1 変数 x に関する不等式 $x^3+3 \ge \frac{x}{2}(5x+1)$ を解け.

数分解すると (x+1)(x-2)(2x-3) > 0.

x の値		-1		$\frac{3}{2}$		2	
x+1 の値の符号	_	0	+	+	+	+	+
2x-3 の値の符号	_	_	_	0	+	+	+
x-2 の値の符号	_	_	_	_	_	0	+
(x+1)(x-2)(2x-3) の値の符号	_	0	+	0	_	0	+

与えられた不等式を解くと、 $-1 \le x \le \frac{3}{2}$ または $x \ge 2$.

不等式 $3x^2(x-3) < 2x(x+2)$ を整理すると $3x^3 - 11x^2 - 4x < 0$, 左辺を

x(x-4)(3x+1) < 0.

|問6.拡充3.2| 変数 x に関する不等式 $3x^2(x-3) < 2x(x+2)$ を解け.

因数分解すると

x の値		$-\frac{1}{3}$		0		4	
3x+1 の値の符号	_	0	+	+	+	+	+
x の値の符号	_	_	_	0	+	+	+
x-4 の値の符号	_	-	_	_	_	0	+
x(x-4)(3x+1) の符号	_	0	+	0	_	0	+

与えられた不等式を解くと, $x<-rac{1}{3}$ または 0< x<4 .

|例| 変数 x に関する 3 次不等式 $x^3-3x-2>0$ 及び $x^3-3x-2\geq0$ を解く. x=-1 のとき $x^3-3x-2=0$ なので、因数定理より、整式 x^3-3x-2 は x+1 で割り切れる: $x^3 - 3x - 2 = (x+1)(x^2 - x - 2)$. 更に $x^2-x-2=(x-2)(x+1)$ なので, $x^3 - 3x - 2 = (x+1)(x-2)(x+1) = (x+1)^2(x-2)$. x の値について場合分 x の値 けして, $x^3 - 3x - 2 =$ $(x+1)^2$ の値の符号 $(x+1)^2(x-2)$ の値の x-2 の値の符号 符号を調べる.この表 $(x+1)^2(x-2)$ の値の符号 より. x に関する不等式 $x^3 - 3x - 2 > 0$ を解くと 2 < x. x に関する不等式 $x^3-3x-2\geq 0$ を解くと x=-1 または $2\leq x$. |x|

不等式 $x(x^2-7) > (x+4)(x-3)$ を整理すると $x^3 - x^2 - 8x + 12 > 0$. x の値 左辺を因数分解すると *x* + 3 の符号 0

|問6.拡充3.2| 変数 x に関する不等式 $x(x^2-7) > (x+4)(x-3)$ を解け.

 $(x-2)^2(x+3) > 0$.

この不等式を解くと、 x > -3かつ $x \neq 2$.

$$(x-2)^2$$
 の符号 $(x-2)^2(x+3)$ の符号

$$\frac{+}{-}$$
 $\frac{+}{0}$

|例| 変数 u に関する 3 次不等式 $u^3 + 2u > 3(u-2)$ を解く. 与えられた不等式 $u^3 + 2u > 3(u-2)$ を整理すると $u^3 - u + 6 > 0$. u=-2 のとき $u^3-u+6=0$ なので、因数定理より、整式 u^3-u+6 は u+2 で割り切れる: $u^3-u+6=(u+2)(u^2-2u+3)$. よって $(u+2)(u^2-2u+3) > 0$. u に関する 2 次方程式 $u^2-2u+3=0$ の判別式の値は $2^2-4\cdot 3=-8<0$ なので、u の 2 次式 u^2-2u+3 を平方完成する: 任意の実数 u について $u^2 - 2u + 3 = (u - 1)^2 + 2 > 0$. つまり、u の値に関わらず u^2-2u+3 の値は常に正である、従って、不等式 $(u+2)(u^2-2u+3)>0$ の両辺を u^2-2u+3 で割ることができて、 u+2>0 、 つまり u>-2 . 故 に、与えられた不等式を解くと u > -2. 終

問
$$6.$$
拡充 3.2] 変数 x に関する不等式 $\frac{x^2}{3}(x-2) \leq \frac{x-1}{2}$ を解きなさい. 不等式 $\frac{x^2}{3}(x-2) \leq \frac{x-1}{2}$ を整理すると $2x^3 - 4x^2 - 3x + 3 \leq 0$

不等式 $\frac{x^2}{3}(x-2) \leq \frac{x-1}{2}$ を整理すると $2x^3-4x^2-3x+3 \leq 0$, この不等 式の左辺は

$$2x^3 - 4x^2 - 3x + 3 = (x+1)(2x^2 - 6x + 3)$$

 $=2(x+1)\left(x-\frac{3+\sqrt{3}}{2}\right)\left(x-\frac{3-\sqrt{3}}{2}\right),$

$$=2$$

$$3+\sqrt{3}$$

よって $(x+1)\left(x-rac{3+\sqrt{3}}{2}
ight)\left(x-rac{3-\sqrt{3}}{2}
ight)\leq 0$. この不等式を解くと、

$$x \le -1 \quad \sharp \text{ told } \frac{3-\sqrt{3}}{2} \le x \le \frac{3+\sqrt{3}}{2} \ .$$

$$< x < \frac{3+\sqrt{3}}{}$$