7.0 座標平面の線分の長さ

[ピタゴラスの定理(三平方の定理)] 相異なる
$$3$$
点 A,B,C を頂点とする 三角形 ABC において角 ACB が直角であるとき,
$$\overline{AC}^2 + \overline{BC}^2 = \overline{AB}^2$$
.

[定理7.0] 座標平面において、点 $A=(a_1,a_2)$ と点 $B=(b_1,b_2)$ とを結ぶ線

 $\overline{AB}^2 = (a_1 - b_1)^2 + (a_2 - b_2)^2$.

分 AB の長さ AB は

証明 点
$$\mathrm{A}=(a_1,a_2)$$
 及び点 $\mathrm{B}=(b_1,b_2)$ に対して,座標平面の点 $\mathrm{C}=(b_1,a_2)$ をとる.

ピタゴラスの定理より次の定理が導かれる.

線分 AC はx軸と平行であり、線分 BC はy軸と平行である. x 軸とy 軸とは垂直に交わる ので、三角形 ABC は ∠ACB を直角とする直 角三角形である、従って、ピタゴラスの定理に

より, $\overline{AC}^2 + \overline{BC}^2 = \overline{AB}^2$

 a_2 a_1

$$A=(a_1,a_2)$$
 , $C=(b_1,a_2)$ なので、定理 2.7.7 により $\overline{AC}=|a_1-b_1|$ 、定理 2.7.5により $\overline{AC}^2=|a_1-b_1|^2=(a_1-b_1)^2$. a_2-b_2 ので、定理 2.7.7 により $\overline{BC}=|a_2-b_2|$ 、定理 2.7.5により $\overline{BC}^2=|a_2-b_2|$ 、定理 2.7.5により $\overline{BC}^2=|a_2-b_2|^2=(a_2-b_2)^2$. 故に、 $\overline{AB}^2=\overline{AC}^2+\overline{BC}^2=(a_1-b_1)^2+(a_2-b_2)^2$. 終 [定理 2.7.7] 数直線上の任意の実数 a と b とについて、 a と b との間の距離は $|a-b|$ である.

 $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$

[定理 2.7.5] 任意の実数 a について $|a|^2 = a^2$.