8.4 冪関数

実数 a 及び自然数 n に対し,a の n 個の積を a の n 乗といい, a^n と書 き表した: η 個の積

 $a^n = \overbrace{a \times a \times a \times \cdots \times a}$:

特に、
$$n=0$$
 のときは $a^0=1$ と定めた.

実数 a 及び自然数 n に対し、a の n 個の積を a の n 乗といい、 a^n と書 き表した: η 個の積

特に、
$$n=0$$
 のときは $a^0=1$ と定めた。 a^0 、 a^1 、 a^2 何個か(0 個以上)掛け合わせた積を a の冪という。

特に、n=0 のときは $a^0=1$ と定めた、 a^0 , a^1 , a^2 , a^3 , ... など、数 a を

 $a^n = \overbrace{a \times a \times a \times \cdots \times a}$:

き表した: $a^n = \overbrace{a \times a \times a \times \cdots \times a}^{n \ \, \textbf{個の積}} :$

特に、n=0 のときは $a^0=1$ と定めた、 a^0 , a^1 , a^2 , a^3 , ... など、数 a を

実数 a 及び自然数 n に対し,a の n 個の積を a の n 乗といい, a^n と書

何個か(
$$0$$
 個以上)掛け合わせた積を a の冪という.冪を表す式 a^n において, a を底といい, n を指数という. 指数 \dagger 指数が n の a の冪 a^n

変数 x の冪 x^1 $, x^2$ $, x^3$ $, x^4$ $, \ldots$ は x の関数である。これらの関数を冪関 数という.

変数 x の冪 x^1 , x^2 , x^3 , x^4 , ... は x の関数である. これらの関数を冪関 数という.一般に,定数 n が正の自然数のとき,実数 x に x の冪 x^n を対 応させる関数を、指数がnである冪関数という。

各実数
$$x$$
 について $(-x)^2=x^2$. 正の自然数 n が偶数のとき, $n=2m$ (m は正のある自然数) となるので,自然数指数の指数法則より,
$$(-x)^n=(-x)^{2m}=\{(-x)^2\}^m=(x^2)^m=x^{2m}$$

$$=x^n$$
.

(
$$m$$
 は正のある自然数) となるので、自然数指数の指数法則より、
$$(-x)^n = (-x)^{2m} = \{(-x)^2\}^m = (x^2)^m = x^{2m}$$

 $=x^n$. 自然数 n が奇数のとき、 n=2m+1 (m はある自然数) となるので、自然

各実数 x について $(-x)^2=x^2$. 正の自然数 n が偶数のとき, n=2m

数指数の指数法則より,
$$(-x)^n = (-x)^{2m+1} = (-x)^{2m} \cdot (-x) = -\{(-x)^2\}^m x$$

$$(-x)^n = (-x)^{2m+1} = (-x)^{2m} \cdot (-x) = -\{(-x)^2\}^m x$$

$$(-x)^n = (-x)^{2m+1} = (-x)^{2m} \cdot (-x) = -\{(-x)^2\}^m x$$
$$= -(x^2)^m x = -x^{2m} x = -x^{2m+1}$$

$$= -(x^2)^m x = -x^{2m} x = -x^{2m+1}$$

$$= -(x^{-})^{\cdots}x = -x^{-\cdots}x = -x^{-\cdots}$$

$$=-x^n$$
.

$$=-x^n$$
.

$$=-x^{n}$$
.

(m) は正のある自然数) となるので、自然数指数の指数法則より $(-x)^n = (-x)^{2m} = \{(-x)^2\}^m = (x^2)^m = x^{2m}$

$$=x^n$$
 .
自然数 n が奇数のとき、 $n=2m+1$ (m はある自然数) となるので、自然

各実数 x について $(-x)^2=x^2$. 正の自然数 n が偶数のとき, n=2m

数指数の指数法則より.

$$(-x)^n = (-x)^{2m+1} = (-x)^{2m} \cdot (-x) = -\{(-x)^2\}^m x$$
$$= -(x^2)^m x = -x^{2m} x = -x^{2m+1}$$

$$= -(x^2)^m x = -x^{2m} x = -x^{2m+1}$$

$$= -(x^n) \quad x = -x^n \quad x = -x^n$$

$$\equiv -x$$
 .

里 正の自然数
$$n$$
 及び任意の実数 x について,

定理 正の自然数
$$n$$
 及び任意の実数 x について,

$$oldsymbol{z}$$
理 正の自然数 n 及び任意の実数 x について,

E埋 正の自然剱
$$n$$
 及び任息の美剱 x について, n が奇数のとき $(-x)^n=x^n$, n が偶数のとき $(-x)^n=x^n$.

定理 正の自然数 n 及び任意の実数 x について, n が奇数のとき $(-x)^n=-x^n$, n が偶数のとき $(-x)^n=x^n$. この定理より,正の自然数 n を指数とする冪関数 x^n は,n が奇数のとき 奇関数であり,n が偶数のとき偶関数である.

定理 正の自然数 n 及び任意の実数 x について. n が奇数のとき $(-x)^n=-x^n$, n が偶数のとき $(-x)^n=x^n$. この定理より、正の自然数 n を指数とする冪関数 x^n は、n が奇数のとき

xy 座標平面において、奇関数のグラフは原点に関して対称であり、偶関数

奇関数であり、 n が偶数のとき偶関数である.

のグラフはy軸に関して対称であった.

定理 正の自然数 n 及び任意の実数 x について. n が奇数のとき $(-x)^n=-x^n$, n が偶数のとき $(-x)^n=x^n$. この定理より、正の自然数 n を指数とする冪関数 x^n は、n が奇数のとき 奇関数であり、 n が偶数のとき偶関数である.

xy 座標平面において、奇関数のグラフは原点に関して対称であり、偶関数

のグラフはy軸に関して対称であった。従って、正の自然数nを指数とする

冪関数 $y=x^n$ のグラフは、n が奇数のとき原点に関して対称であり、n が

偶数のときy軸に関して対称である.

