11.3 還元公式

任意の一般角 heta について $\sin(- heta)=$.

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 角度 θ の表現法は度数法で

も弧度法でもよい.

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 任意の実数 x に対する一般

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$.

$$\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x.$$

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$.

任意の一般角
$$heta$$
 について $\cos(- heta) =$.

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$.

任意の一般角
$$heta$$
 について $\cos(- heta) = \cos heta$. 角度 $heta$ の表現法は度数法でも

角 xrad について $\sin(-x$ rad) = $-\sin(x$ rad) なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$.

任意の一般角
$$\theta$$
 について $\cos(-\theta) = \cos\theta$. 任意の実数 x に対する一般角

$$x$$
rad について $\cos(-x$ rad) = $\cos(x$ rad) なので,

角 $x\mathrm{rad}$ について $\sin(-x\mathrm{rad}) = -\sin(x\mathrm{rad})$ なので、 $\sin(-x) = \sin(-x\mathrm{rad}) = -\sin(x\mathrm{rad}) = -\sin x \ .$ 任意の一般角 θ について $\cos(-\theta) = \cos\theta$. 任意の実数 x に対する一般角

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 任意の実数 x に対する一般

$$x$$
rad について $\cos(-x$ rad) = $\cos(x$ rad) なので,

 $\cos(-x) = \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) = \cos x$.

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$. 任意の一般角 θ について $\cos(-\theta) = \cos\theta$. 任意の実数 x に対する一般角

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 任意の実数 x に対する一般

 $x \operatorname{rad} \operatorname{CONT} \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) \quad \text{to},$

 $\cos(-x) = \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) = \cos x$.

 $rac{\pi}{2}\mathrm{rad}=90^\circ$ の奇数倍でない任意の一般角 heta について an(- heta)=

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$. 任意の一般角 θ について $\cos(-\theta) = \cos\theta$. 任意の実数 x に対する一般角

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 任意の実数 x に対する一般

 $x \operatorname{rad} \operatorname{CONT} \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) \quad \text{to},$ $\cos(-x) = \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) = \cos x$.

$$\cos(-x) = \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) = \cos x.$$

 $rac{\pi}{2}\mathrm{rad}=90^\circ$ の奇数倍でない任意の一般角 heta について an(- heta)=- an heta .

角度 θ の表現法は度数法でも弧度法でもよい.

角 xrad について $\sin(-x$ rad) = $-\sin(x$ rad) なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$. 任意の一般角 θ について $\cos(-\theta) = \cos\theta$. 任意の実数 x に対する一般角 $x \operatorname{rad} \operatorname{CONT} \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) \quad \text{to},$

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 任意の実数 x に対する一般

 $\cos(-x) = \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) = \cos x$. $\frac{\pi}{2} \mathrm{rad} = 90^\circ$ の奇数倍でない任意の一般角 θ について $\tan(-\theta) = -\tan\theta$.

 $\frac{\pi}{2}$ の奇数倍でない任意の実数 x に対する一般角 xrad について

tan(-xrad) = -tan(xrad) なので、

角 $x \operatorname{rad}$ について $\sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad})$ なので、 $\sin(-x) = \sin(-x \operatorname{rad}) = -\sin(x \operatorname{rad}) = -\sin x$. 任意の一般角 θ について $\cos(-\theta) = \cos\theta$. 任意の実数 x に対する一般角 $x \operatorname{rad} \operatorname{CONT} \cos(-x \operatorname{rad}) = \cos(x \operatorname{rad}) \quad \text{to},$

任意の一般角 θ について $\sin(-\theta) = -\sin\theta$. 任意の実数 x に対する一般

$$\cos(-x)=\cos(-x\mathrm{rad})=\cos(x\mathrm{rad})=\cos x$$
 .
$$\frac{\pi}{2}\mathrm{rad}=90^\circ \ \, \pmb{\mathcal{O}}$$
 奇数倍でない任意の一般角 θ について $\tan(-\theta)=-\tan\theta$.

 $\frac{\pi}{2}$ の奇数倍でない任意の実数 x に対する一般角 xrad について

 $\tan(-x \operatorname{rad}) = -\tan(x \operatorname{rad})$ なので,

 $\tan(-x) = \tan(-x \operatorname{rad}) = -\tan(x \operatorname{rad}) = -\tan x.$

 $\sin(-x) = -\sin x , \qquad \cos(-x) = \cos x ,$

数である.

正弦関数 $\sin x$ と正接関数 $\tan x$ とは 関数であり、余弦関数 $\cos x$ は 関

[定理 11.3.1] 任意の実数 x について,

x が $\frac{\pi}{2}$ の奇数倍でないとき $\tan(-x) = -\tan x$.

 $\sin(-x) = -\sin x$, $\cos(-x) = \cos x$,

x が $\frac{\pi}{2}$ の奇数倍でないとき $\tan(-x) = -\tan x$.

数である.

正弦関数
$$\sin x$$
 と正接関数 $\tan x$ とは奇関数であり、余弦関数 $\cos x$ は偶関

[定理 11.3.1] 任意の実数 x について,

任意の一般角 θ について $\sin\left(\theta + \frac{\pi}{2}\text{rad}\right) = \sin(\theta + 90^{\circ}) =$

任意の一般角
$$\theta$$
 について $\sin\left(\theta+\frac{\pi}{2}\mathrm{rad}\right)=\sin(\theta+90^\circ)=\cos\theta$. 角度 θ の表現法は度数法でもよい.

数
$$x$$
 に対する一般角 $x\mathrm{rad}$ について $\sin\left(x\mathrm{rad} + \frac{\pi}{2}\mathrm{rad}\right) = \cos(x\mathrm{rad})$ なので、

任意の一般角 θ について $\sin\left(\theta + \frac{\pi}{2}\text{rad}\right) = \sin(\theta + 90^\circ) = \cos\theta$. 任意の実

数
$$x$$
 に対する一般角 x rad について $\sin\left(x$ rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) なので、
$$\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x$$
rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) = $\cos x$.

任意の一般角 θ について $\sin\left(\theta + \frac{\pi}{2}\text{rad}\right) = \sin(\theta + 90^\circ) = \cos\theta$. 任意の実

数 x に対する一般角 xrad について $\sin\left(x$ rad $+\frac{\pi}{2}$ rad $+\frac{\pi$

任意の一般角 θ について $\sin\left(\theta + \frac{\pi}{2}\text{rad}\right) = \sin(\theta + 90^\circ) = \cos\theta$. 任意の実

$$\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x \operatorname{rad} + \frac{\pi}{2}\operatorname{rad}\right) = \cos(x \operatorname{rad}) = \cos x$$
.

任意の一般角
$$\theta$$
 について $\cos\left(\theta + \frac{\pi}{2}\text{rad}\right) = \cos(\theta + 90^{\circ}) =$.

数 x に対する一般角 xrad について $\sin\left(x$ rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) なので, $\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x$ rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) = $\cos x$.

任意の一般角 θ について $\sin\left(\theta + \frac{\pi}{2}\text{rad}\right) = \sin(\theta + 90^\circ) = \cos\theta$. 任意の実

に音の一般色
$$A$$
 について $\cos\left(A + \frac{\pi}{2} \operatorname{rod}\right) - \cos\left(A + 00^{\circ}\right) - \sin A$

任意の一般角 θ について $\cos\left(\theta + \frac{\pi}{2}\mathrm{rad}\right) = \cos(\theta + 90^\circ) = -\sin\theta$. 角度 θ

数 x に対する一般角 xrad について $\sin\left(x$ rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) なので, $\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x$ rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) = $\cos x$.

任意の一般角 θ について $\sin\left(\theta+\frac{\pi}{2}\mathrm{rad}\right)=\sin(\theta+90^\circ)=\cos\theta$. 任意の実

$$\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x \operatorname{rad} + \frac{\pi}{2}\operatorname{rad}\right) = \cos(x \operatorname{rad}) = \cos x$$
.

任意の一般角
$$\theta$$
 について $\cos\left(\theta + \frac{\pi}{2}\mathrm{rad}\right) = \cos(\theta + 90^\circ) = -\sin\theta$. 任意の

実数
$$x$$
 に対する一般角 x rad について $\cos\left(x$ rad + $\frac{\pi}{2}$ rad $\cos\left(x\right)$

数 x に対する一般角 xrad について $\sin\left(x$ rad $+\frac{\pi}{2}$ rad $\right) = \cos(x$ rad) なので、

$$\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x \operatorname{rad} + \frac{\pi}{2}\operatorname{rad}\right) = \cos(x \operatorname{rad}) = \cos x$$
.

任意の一般角 θ について $\sin\left(\theta+\frac{\pi}{2}\mathrm{rad}\right)=\sin(\theta+90^\circ)=\cos\theta$. 任意の実

任意の一般角
$$\theta$$
 について $\cos\left(\theta+\frac{\pi}{2}\mathrm{rad}\right)=\cos(\theta+90^\circ)=-\sin\theta$. 任意の

実数
$$x$$
 に対する一般角 x rad について $\cos\left(x$ rad + $\frac{\pi}{2}$ rad $\cos\left(x\right)$

数
$$x$$
 に対する一般角 x rad に y いて $\cos\left(x$ rad $+\frac{1}{2}$ rad y = $-\sin(x$ rad) なで、

ので,

 $\cos\left(x + \frac{\pi}{2}\right) = \cos\left(x \operatorname{rad} + \frac{\pi}{2}\operatorname{rad}\right) = -\sin(x \operatorname{rad}) = -\sin x$.

任意の実数 x に対して $y=x-\frac{\pi}{2}$ とおく.

$$\cos y = \sin\left(y + \frac{\pi}{2}\right)$$
 なので、

任意の実数 x に対して $y=x-\frac{\pi}{2}$ とおく. $\sin\left(y+\frac{\pi}{2}\right)=\cos y$ つまり

任意の実数 x に対して $y=x-\frac{\pi}{2}$ とおく. $\sin\left(y+\frac{\pi}{2}\right)=\cos y$ つまり $\cos y = \sin\left(y + \frac{\pi}{2}\right)$ なので,

$$\cos y = \sin\left(y + \frac{\pi}{2}\right)$$
 なので、
$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left\{\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin x .$$

$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left\{\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin x.$$

任意の実数 x に対して $y=x-\frac{\pi}{2}$ とおく. $\sin\left(y+\frac{\pi}{2}\right)=\cos y$ つまり $\cos y = \sin\left(y + \frac{\pi}{2}\right)$ なので,

$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left\{\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin x.$$

$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left\{\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin x .$$

$$\cos\left(y + \frac{\pi}{2}\right) = -\sin y \quad \text{よって} \quad \sin y = -\cos\left(y + \frac{\pi}{2}\right) \quad \text{なので},$$

任意の実数 x に対して $y=x-\frac{\pi}{2}$ とおく. $\sin\left(y+\frac{\pi}{2}\right)=\cos y$ つまり $\cos y=\sin\left(y+\frac{\pi}{2}\right)$ なので、

$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left(\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right) = \sin x.$$

 $\sin\left(x - \frac{\pi}{2}\right) = \sin y = -\cos\left(y + \frac{\pi}{2}\right) = -\cos\left(\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right) = -\cos x$.

$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left\{\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin x .$$

$$\cos\left(y + \frac{\pi}{2}\right) = -\sin y \quad \text{よって} \quad \sin y = -\cos\left(y + \frac{\pi}{2}\right) \quad \text{なので.}$$

任意の実数 x に対して $y=x-\frac{\pi}{2}$ とおく. $\sin\left(y+\frac{\pi}{2}\right)=\cos y$ つまり $\cos y = \sin\left(y + \frac{\pi}{2}\right)$ なので,

$$\cos\left(x - \frac{\pi}{2}\right) = \cos y = \sin\left(y + \frac{\pi}{2}\right) = \sin\left\{\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin x .$$

$$\cos\left(y + \frac{\pi}{2}\right) = -\sin y \quad \text{よって} \quad \sin y = -\cos\left(y + \frac{\pi}{2}\right) \quad \text{なので},$$

$$\sin\left(x - \frac{\pi}{2}\right) = -\sin y = -\cos\left(y + \frac{\pi}{2}\right) = -\cos\left(\left(x - \frac{\pi}{2}\right) + \frac{\pi}{2}\right) = -\cos x.$$

[定理 11.3.2] 任意の実数 x について,

$$\sin\left(x\pm\frac{\pi}{2}\right)=\pm\cos x$$
 (複号同順),

$$\cos\left(x\pm\frac{\pi}{2}\right)=\mp\sin x$$
 (複号同順).

$$\cos\left(x\pm\frac{\pi}{2}\right) = \mp\sin x$$
 (複号同順).

任意の実数 x に対して $y=x+\frac{\pi}{2}$ とおく.

任意の実数 x に対して $y = x + \frac{\pi}{2}$ とおく.

$$\sin(x+\pi) = \sin\left\{\left(x+\frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin\left(y+\frac{\pi}{2}\right)$$

$$=\cos y \qquad \qquad \sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$=\cos y \qquad \qquad \sin\left(x + \frac{\pi}{2}\right) = \cos y$$

任意の実数 x に対して $y = x + \frac{\pi}{2}$ とおく. $\sin(x+\pi) = \sin\left\{\left(x+\frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin\left(y+\frac{\pi}{2}\right)$

 $=\cos y = \cos\left(x + \frac{\pi}{2}\right)$

 $=-\sin x$. $\cos\left(x+\frac{\pi}{2}\right)=-\sin x$

任意の実数 x に対して $y = x + \frac{\pi}{2}$ とおく. $\sin(x+\pi) = \sin\left\{\left(x+\frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin\left(y+\frac{\pi}{2}\right)$

 $=\cos y = \cos\left(x + \frac{\pi}{2}\right)$

 $\cos(x+\pi) = \cos\left\{\left(x+\frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \cos\left(y+\frac{\pi}{2}\right)$

 $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$

 $=-\sin x$.

 $=-\sin u$

任意の実数 x に対して $y = x + \frac{\pi}{2}$ とおく. $\sin(x+\pi) = \sin\left\{\left(x+\frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \sin\left(y+\frac{\pi}{2}\right)$

 $=\cos y = \cos\left(x + \frac{\pi}{2}\right)$

 $=-\sin y = -\sin\left(x + \frac{\pi}{2}\right)$

 $=-\cos x$. $\sin\left(x+\frac{\pi}{2}\right)=\cos x$

 $=-\sin x$.

$$\cos(x+\pi) = \cos\left\{\left(x+\frac{\pi}{2}\right) + \frac{\pi}{2}\right\} = \cos\left(y+\frac{\pi}{2}\right)$$

任意の実数 x に対して $z=x-\frac{\pi}{2}$ とおく.

$$\sin(x-\pi) = \sin\left\{\left(x - \frac{\pi}{2}\right) - \frac{\pi}{2}\right\} = \sin\left(z - \frac{\pi}{2}\right)$$

$$\mathbf{n}(x)$$

$$\mathbf{1}(x)$$

 $=-\cos z$

 $\sin\left(x - \frac{\pi}{2}\right) = -\cos x$

任意の実数 x に対して $z=x-\frac{\pi}{2}$ とおく. $\sin(x-\pi) = \sin\left\{\left(x - \frac{\pi}{2}\right) - \frac{\pi}{2}\right\} = \sin\left(z - \frac{\pi}{2}\right)$

 $=-\cos z=-\cos\left(x-\frac{\pi}{2}\right)$

 $=-\sin x$. $\cos\left(x-\frac{\pi}{2}\right)=\sin x$

任意の実数 x に対して $z=x-\frac{\pi}{2}$ とおく. $\sin(x-\pi) = \sin\left\{\left(x - \frac{\pi}{2}\right) - \frac{\pi}{2}\right\} = \sin\left(z - \frac{\pi}{2}\right)$

 $=-\cos z=-\cos\left(x-\frac{\pi}{2}\right)$

 $\cos\left(x - \frac{\pi}{2}\right) = \sin x$

 $=-\sin x$.

 $= \sin z$

$$= -\sin x \ .$$

$$\cos(x - \pi) = \cos\left\{\left(x - \frac{\pi}{2}\right) - \frac{\pi}{2}\right\} = \cos\left(z - \frac{\pi}{2}\right)$$

任意の実数 x に対して $z=x-\frac{\pi}{2}$ とおく. $\sin(x-\pi) = \sin\left\{\left(x-\frac{\pi}{2}\right) - \frac{\pi}{2}\right\} = \sin\left(z-\frac{\pi}{2}\right)$

$$\cos(x-\pi) = \cos\left\{\left(x - \frac{\pi}{2}\right) - \frac{\pi}{2}\right\} = \cos\left(z - \frac{\pi}{2}\right)$$

 $=-\cos z=-\cos\left(x-\frac{\pi}{2}\right)$

 $=\sin z = \sin\left(x - \frac{\pi}{2}\right)$

 $=-\cos x$. $\sin\left(x-\frac{\pi}{2}\right)=-\cos x$

 $=-\sin x$.

[定理11.3.3] 任意の実数
$$x$$
 について,
$$\sin(x\pm\pi) = -\sin x \;, \qquad \cos(x\pm\pi) = -\cos x \;.$$

任意の実数 x に対して $y = x + \pi$ とおく.

任意の実数
$$x$$
 に対して $y=x+\pi$ とおく.
$$\sin(x+2\pi)=\sin\{(x+\pi)+\pi\}=\sin(y+\pi)$$

 $=\sin x$.

 $= -\sin y = -\sin(x+\pi) = -(-\sin x)$

$$\sin(x+2\pi) = \sin\{(x+\pi) + \pi\} = \sin(y+\pi)$$
$$= -\sin y = -\sin(x+\pi) = -(-\sin x)$$

任意の実数 x に対して $y = x + \pi$ とおく.

 $=\sin x$.

 $=\cos x$.

 $= -\cos y = -\cos(x+\pi) = -(-\cos x)$

$$= \sin x .$$

$$\cos(x + 2\pi) = \cos\{(x + \pi) + \pi\} = \cos(y + \pi)$$

$$\sin(x+2\pi) = \sin\{(x+\pi) + \pi\} = \sin(y+\pi)$$

= $-\sin y = -\sin(x+\pi) = -(-\sin y) = -(-\sin y) = -\sin(x+\pi) = -(-\sin y) = -(-\sin x) = -(-\sin x) = -(-\cos x) = -$

任意の実数 x に対して $y = x + \pi$ とおく.

 $= \sin x$.

 $=\cos x$. こうして次のことが分かる:任意の実数 x について.

 $= -\sin y = -\sin(x+\pi) = -(-\sin x)$

 $= -\cos y = -\cos(x+\pi) = -(-\cos x)$

 $\sin(x+2\pi) = \sin x$, $\cos(x+2\pi) = \cos x$.

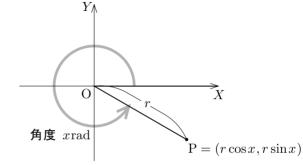
- $\cos(x+2\pi) = \cos\{(x+\pi) + \pi\} = \cos(y+\pi)$

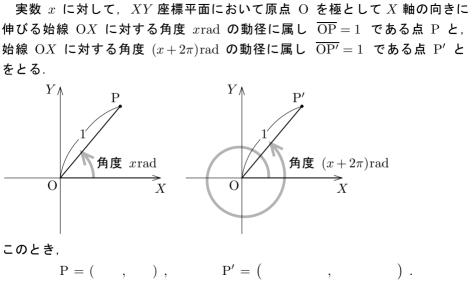
このことは図で考えて 用いる: 実数 x に対し て、XY 座標平面におい

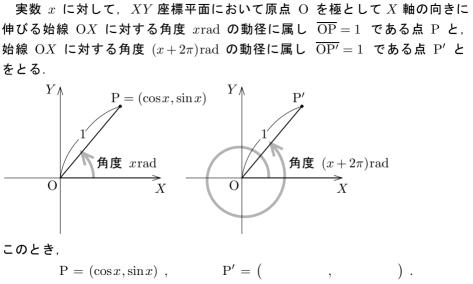
て原点 〇 を極として X 軸の向きに伸びる始 線 OX に対する角度が xrad である動径に属す 点 P について $\overline{OP} = r$

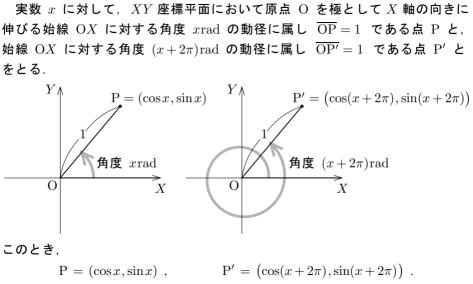
も分かる.次のことを

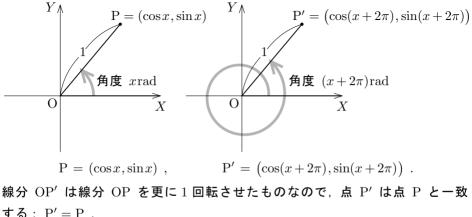
とおくと $P = (r \cos x, r \sin x)$.

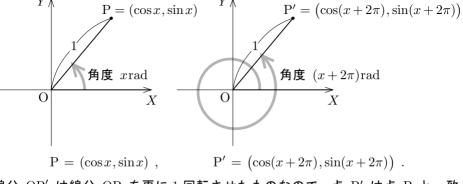












線分 OP' は線分 OP を更に1回転させたものなので、点 P' は点 P と一致

する: P' = P. 従って $(\cos(x+2\pi), \sin(x+2\pi)) = (\cos x, \sin x)$ なので、

 $\cos(x+2\pi) = \cos x$, $\sin(x+2\pi) = \sin x$.

x は任意の実数とする.

$$x$$
 は任意の実数とする. 任意の実数 X について $\sin X = \sin(X+2\pi)$ なで,
$$\sin x = \sin(x+2\pi) = \sin\{(x+2\pi)+2\pi\}$$

$$= \sin(x+4\pi) = \sin\{(x+4\pi)+2\pi\}$$

ので,

$$= \sin(x + 4\pi) = \sin\{(x + 4\pi) + 2\pi\}$$
$$= \sin(x + 6\pi) = \sin\{(x + 6\pi) + 2\pi\}$$

 $=\sin(x+8\pi)=\cdots$.

$$x$$
 は任意の実数とする。任意の実数 X について $\sin X = \sin(X+2\pi)$ なので、
$$\sin x = \sin(x+2\pi) = \sin\{(x+2\pi)+2\pi\}$$

$$= \sin(x+4\pi) = \sin\{(x+4\pi)+2\pi\}$$

$$= \sin(x+6\pi) = \sin\{(x+6\pi)+2\pi\}$$

$$= \sin(x+8\pi) = \cdots$$
任意の実数 X について $\sin X = \sin((X-2\pi)+2\pi) = \sin((X-2\pi))$ なので、 $\sin x = \sin((x-2\pi)) = \sin\{(x-2\pi)-2\pi\}$

$$= \sin((x-4\pi)) = \sin\{(x-4\pi)-2\pi\}$$

$$= \sin((x-6\pi)) = \sin\{(x-6\pi)-2\pi\}$$

$$= \sin((x-8\pi)) = \cdots$$

余弦関数
$$\cos x$$
 についても同様のことが成り立つ:
$$\cos x = \cos(x+2\pi) = \cos(x+4\pi) = \cos(x+6\pi) = \cos(x+8\pi) = \cdots ,$$

$$\cos x = \cos(x + 2\pi) = \cos(x + 4\pi) = \cos(x + 6\pi) = \cos(x + 8\pi) = \cdots$$

$$\cos x = \cos(x - 2\pi) = \cos(x - 4\pi) = \cos(x - 6\pi) = \cos(x - 8\pi) = \cdots$$

$$\cos x = \cos(x - 2\pi) = \cos(x - 4\pi) = \cos(x - 6\pi) = \cos(x - 8\pi) = \cdots$$

$$\cos x = \cos(x + 2\pi) = \cos(x + 4\pi) = \cos(x + 6\pi) = \cos(x + 8\pi) = \cdots$$

余弦関数 $\cos x$ についても同様のことが成り立つ:

 $\cos x = \cos(x - 2\pi) = \cos(x - 4\pi) = \cos(x - 6\pi) = \cos(x - 8\pi) = \cdots$

 $\sin(x\pm(\pi \, \mathcal{O}$ 偶数倍)) = $\sin x$, $\cos(x\pm(\pi \, \mathcal{O}$ 偶数倍)) = $\cos x$.

$$\cos x = \cos(x + 2\pi) = \cos(x + 4\pi) = \cos(x + 6\pi) = \cos(x + 8\pi) = \cdots$$

余弦関数 $\cos x$ についても同様のことが成り立つ:

$$\cos x = \cos(x - 2\pi) = \cos(x - 4\pi) = \cos(x - 6\pi) = \cos(x - 8\pi) = \cdots$$
 . つまり次のようになる:

$$\sin(x\pm(\pi$$
 の偶数倍 $))=\sin x$, $\cos(x\pm(\pi$ の偶数倍 $))=\cos x$.

$$\sin(x\pm(\pi))$$
 (の情致情) $\sin(x\pm(\pi))$ ($\cos(x\pm(\pi))$ (の情致情) $\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$) $\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$) $\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$) $\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$) $\sin(x\pm(\pi))$ ($\sin(x\pm(\pi))$) $\sin(x\pm(\pi))$ ($\sin($

$$[$$
定理11.3.4 $]$ 任意の整数 n 及び任意の実数 x について,

理
$$11.3.4$$
] 任意の整数 n 及び任意の実数 x について, $\sin(x\pm 2n\pi)=\sin x$, $\cos(x\pm 2n\pi)=\cos x$.

 $\frac{\pi}{2}$ の奇数倍でない任意の実数 X について, $\sin(X+\pi)=-\sin X$,

 $\cos(X+\pi) = -\cos X$ toc.

$$\cos(X+\pi) = -\cos X \quad \text{toc},$$

 $\tan(X+\pi) = \frac{\sin(X+\pi)}{\cos(X+\pi)} = \frac{-\sin X}{-\cos X} = \frac{\sin X}{\cos X} = \tan X ,$

 $\frac{\pi}{2}$ の奇数倍でない任意の実数 X について, $\sin(X+\pi)=-\sin X$,

つまり
$$\tan X = \tan(X + \pi)$$
 .

$$\frac{\pi}{2}$$
 の奇数倍でない任意の実数 X について、 $\sin(X+\pi)=-\sin X$ 、 $\cos(X+\pi)=-\cos X$ なので、
$$\tan(X+\pi)=\frac{\sin(X+\pi)}{\cos(X+\pi)}=\frac{-\sin X}{-\cos X}=\frac{\sin X}{\cos X}=\tan X$$
 、

つまり $\tan X = \tan(X + \pi)$. これより, $\frac{\pi}{2}$ の奇数倍でない任意の実数 x に

 $\tan x = \tan(x+\pi) = \tan\{(x+\pi) + \pi\}$

 $= \tan(x + 2\pi) = \tan\{(x + 2\pi) + \pi\}$

 $= \tan(x+3\pi) = \tan\{(x+3\pi) + \pi\}$

 $=\tan(x+4\pi)=\cdots$.

$$\tan X = \tan\{(X-\pi) + \pi\} = \tan(X-\pi) .$$

$$rac{\pi}{2}$$
 の奇数倍でない任意の実数 X について

これより、 $\frac{\pi}{2}$ の奇数倍でない任意の実数 x について,

 $=\tan(x-4\pi)=\cdots$.

 $\tan X = \tan\{(X - \pi) + \pi\} = \tan(X - \pi)$.

 $= \tan(x - 2\pi) = \tan\{(x - 2\pi) - \pi\}$ $= \tan(x - 3\pi) = \tan\{(x - 3\pi) - \pi\}$

 $\tan x = \tan(x - \pi) = \tan\{(x - \pi) - \pi\}$

 $rac{\pi}{2}$ の奇数倍でない任意の実数 X について

$$an X = an \{(X-\pi) + \pi\} = an (X-\pi)$$
 . これより、 $\frac{\pi}{2}$ の奇数倍でない任意の実数 x について、

$$\tan x = \tan(x - \pi) = \tan\{(x - \pi) - \pi\}$$

$$= \tan(x - 2\pi) = \tan\{(x - 2\pi) - \pi\}$$
$$= \tan(x - 3\pi) = \tan\{(x - 3\pi) - \pi\}$$

$$= \tan(x - 4\pi) = \cdots .$$

 $= \tan(x - 4n) = \cdots$

[定理
$$11.3.5$$
] 任意の整数 n 及び任意の実数 x について,
$$x \text{ が } \frac{\pi}{2} \text{ の奇数倍でないとき } \tan(x\pm n\pi) = \tan x \ .$$

 $oxed{ extit{例}}$ 次の式を計算する: $\cos rac{29\pi}{3}$.

例 次の式を計算する:
$$\cos \frac{29\pi}{3}$$
 . $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - \right)$

$$\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - \right)$$
数 n に対して $\cos x = \cos(x + 2n\pi)$

$$\cos \frac{26\pi}{3} = \cos \left(\frac{26\pi}{3} - \right)$$

整数 n に対して $\cos x = \cos(x + 2n\pi)$

例 次の式を計算する:
$$\cos \frac{29\pi}{3}$$
 . $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - 10\pi \right)$

$$\cos \frac{20\pi}{3} = \cos \left(\frac{20\pi}{3} - 10\pi \right)$$
数 n に対して $\cos x = \cos(x + 2n\pi)$

$$\cos \frac{1}{3} = \cos \left(\frac{1}{3} - 10\pi \right)$$

整数 n に対して $\cos x = \cos(x + 2n\pi)$

数
$$n$$
 に対して $\cos x = \cos(x + 2n\pi)$

例次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)$$

$$\cos(-x)=\cos x$$

例次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}$$

$$\cos(-x)=\cos x$$

$$\cos\frac{29\pi}{3} = \cos\left(\frac{29\pi}{3} - 10\pi\right) = \cos\left(-\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2} .$$

 $\overline{\mathbb{M}}$ 次の式を計算する: $\cos rac{29\pi}{3}$.

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2} \ .$$

- $\cos\frac{29\pi}{3} = \cos\left(\frac{29\pi}{3} 8\pi\right)$
- 整数 n に対して $\cos x = \cos(x + 2n\pi)$

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2} \ .$$

こうにも計算できる:
$$\cos\frac{29\pi}{3} = \cos\left(\frac{29\pi}{3} - 8\pi\right) = \cos\frac{5\pi}{3}$$

整数 n に対して $\cos x = \cos(x + 2n\pi)$

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2} \ .$$

 $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - 8\pi \right) = \cos \frac{5\pi}{3} = \cos \left(+\pi \right)$

 $\cos(x+\pi) = -\cos x$

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2} \ .$$

 $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - 8\pi \right) = \cos \frac{5\pi}{3} = \cos \left(\frac{2\pi}{3} + \pi \right)$

 $\cos(x+\pi) = -\cos x$

次のようにも計算できる:
$$29\pi$$
 (2

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2}\;.$$
次のようにも計算できる:

 $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - 8\pi \right) = \cos \frac{5\pi}{3} = \cos \left(\frac{2\pi}{3} + \pi \right)$

 $=-\cos\frac{2\pi}{2}$

 $\cos(x+\pi) = -\cos x$

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2}\;.$$
次のようにも計算できる:

 $=-\cos\frac{2\pi}{3}=-\cos\left(-\frac{\pi}{2}\right)$

 $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$

$$\cos\frac{29\pi}{3} = \cos\left(\frac{29\pi}{3} - 8\pi\right) = \cos\frac{5\pi}{3} = \cos\left(\frac{2\pi}{3} + \pi\right)$$

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2}\;.$$
次のようにも計算できる:

 $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - 8\pi \right) = \cos \frac{5\pi}{3} = \cos \left(\frac{2\pi}{3} + \pi \right)$

 $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$

 $=-\cos\frac{2\pi}{3}=-\cos(\frac{\pi}{6}+\frac{\pi}{2})$

例次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3} = \cos\left(\frac{29\pi}{3} - 10\pi\right) = \cos\left(-\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2} .$$

 $\cos \frac{29\pi}{3} = \cos \left(\frac{29\pi}{3} - 8\pi \right) = \cos \frac{5\pi}{3} = \cos \left(\frac{2\pi}{3} + \pi \right)$

 $=-\cos\frac{2\pi}{3}=-\cos\left(\frac{\pi}{6}+\frac{\pi}{2}\right)=-\left(-\sin\frac{\pi}{6}\right)=\sin\frac{\pi}{6}$

 $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$

例 次の式を計算する:
$$\cos\frac{29\pi}{3}$$
 .
$$\cos\frac{29\pi}{3}=\cos\left(\frac{29\pi}{3}-10\pi\right)=\cos\left(-\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2}\;.$$
次のようにも計算できる:

$$\cos\frac{\pi}{3} = \cos\left(\frac{\pi}{3} - 10\pi\right) = \cos\left(-\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{\pi}{2}.$$
 にも計算できる:

$$\cos\frac{29\pi}{3} = \cos\left(\frac{29\pi}{3} - 8\pi\right) = \cos\frac{5\pi}{3} = \cos\left(\frac{2\pi}{3} + \pi\right)$$
$$= -\cos\frac{2\pi}{3} = -\cos\left(\frac{\pi}{3} + \frac{\pi}{3}\right) = -\left(-\sin\frac{\pi}{3}\right) = \sin\frac{\pi}{3}$$

$$= -\cos\frac{2\pi}{3} = -\cos\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$

$$= -\cos\frac{2\pi}{3} = -\cos\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$

$$= -\cos\frac{2\pi}{3} = -\cos\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$

$$= -\cos\frac{2\pi}{3} = -\cos\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$

$$= -\cos\frac{2\pi}{3} = -\cos\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$
$$-\frac{1}{2}$$

$$=rac{1}{2}$$
 .

$$=rac{1}{2}$$
 .

終

$$=\frac{1}{2}$$
.

例 次の式を計算する:
$$\sin\left(-\frac{19\pi}{6}\right)$$
.
$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + \right)$$
整数 n に対して $\sin x = \sin(x + 2n\pi)$

例 次の式を計算する:
$$\sin\left(-\frac{19\pi}{6}\right)$$
.
$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right)$$
整数 n に対して $\sin x = \sin(x + 2n\pi)$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6}$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(-\frac{\pi}{2}\right)$$
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right)$$
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3}$$
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2} .$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}.$$
次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6}$$

 $\sin(-x) = -\sin$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}.$$
次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6}$$

整数 n に対して $\sin x = \sin(x + 2n\pi)$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$
. 次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right)$$

整数 n に対して $\sin x = \sin(x + 2n\pi)$

oximega 次の式を計算する: $\sin\left(-rac{19\pi}{arepsilon}
ight)$.

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}.$$
次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right) = -\sin\frac{7\pi}{6}$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$
. 次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right) = -\sin\frac{7\pi}{6}$$

oximega 次の式を計算する: $\sin\left(-rac{19\pi}{arepsilon}
ight)$.

$$\sin\left(-\frac{-\sin\left(-\frac{\cos x}{6}\right)}{6}\right) = -\sin\left(\frac{-\cos x}{6}\right) = -\sin\left(\frac{-\cos x}{6}\right) = -\sin\left(\frac{-\cos x}{6}\right)$$
$$= -\sin\left(-\frac{\cos x}{6}\right)$$

 $\sin(x+\pi) = -\sin x$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}.$$
次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right) = -\sin\frac{7\pi}{6}$$

oximega 次の式を計算する: $\sin\left(-rac{19\pi}{arepsilon}
ight)$.

$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right) = -\sin\frac{7\pi}{6}$$
$$= -\sin\left(\frac{\pi}{6} + \pi\right)$$

 $\sin(x+\pi) = -\sin x$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$
. 次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right) = -\sin\frac{7\pi}{6}$$

$$= -\sin\left(\frac{\pi}{6} + \pi\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$

oximega 次の式を計算する: $\sin\left(-rac{19\pi}{arepsilon}
ight)$.

$$= -\sin\left(\frac{\pi}{6} + \pi\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\left(x + \pi\right) = -\sin x$$

$$\sin\left(-\frac{19\pi}{6}\right) = \sin\left(-\frac{19\pi}{6} + 4\pi\right) = \sin\frac{5\pi}{6} = \sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$
. 次のようにも計算できる:
$$\sin\left(-\frac{19\pi}{6}\right) = -\sin\frac{19\pi}{6} = -\sin\left(\frac{19\pi}{6} - 2\pi\right) = -\sin\frac{7\pi}{6}$$
$$= -\sin\left(\frac{\pi}{6} + \pi\right) = -\left(-\sin\frac{\pi}{6}\right) = \sin\frac{\pi}{6}$$
$$= \frac{1}{2} .$$

終

oximega 次の式を計算する: $\sin\left(-rac{19\pi}{arepsilon}
ight)$.

 $\overline{\mathbb{B}11.3.1}$ 次の式を計算せよ: $\cosrac{35\pi}{6}$.

閏11.3.1 次の式を計算せよ:
$$\cos\frac{35\pi}{6}$$
 .
$$\cos\frac{35\pi}{6}=\cos\left(\frac{35\pi}{6}-6\pi\right)=\cos\left(-\frac{\pi}{6}\right)=\cos\frac{\pi}{6}$$
 $\sqrt{3}$

$$=rac{\sqrt{3}}{2}$$
 .
ようにも計算できる:

$=\frac{\sqrt{3}}{2}$.	
次のようにも計算できる :	
35π 35π	$(4\pi) = \cos^{11}\pi = \cos^{5}\pi + \pi$

$$=rac{ extsf{v}}{2}$$
 .
ようにも計算できる: $\cosrac{35\pi}{3}=\cos\left(rac{35\pi}{3}-4\pi
ight)=\cosrac{11\pi}{3}=\cos\left(rac{5\pi}{3}+\pi
ight)$

うにも計算できる:
$$\cos\frac{35\pi}{6} = \cos\left(\frac{35\pi}{3} - 4\pi\right) = \cos\frac{11\pi}{6} = \cos\left(\frac{5\pi}{6} + \pi\right)$$

_	
くうにも計算できる:	
$\cos\frac{35\pi}{6} = \cos\left(\frac{35\pi}{3}\right)$	$-4\pi \Big) = \cos\frac{11\pi}{6} = \cos\left(\frac{5\pi}{6} + \pi\right)$

$$\cos\frac{35\pi}{6} = \cos\left(\frac{35\pi}{3} - 4\pi\right) = \cos\frac{11\pi}{6} = \cos\left(\frac{5\pi}{6} + \pi\right)$$
$$= -\cos\frac{5\pi}{6} = -\cos\left(\frac{\pi}{3} + \frac{\pi}{3}\right) = \sin\frac{\pi}{3}$$

$$= -\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{6} + \frac{\pi}{4}\right)$$

$$= -\cos\frac{5\pi}{6} = -\cos\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = \sin\frac{\pi}{3}$$

 $=\frac{\sqrt{3}}{2}$.

 $| \mathbb{B}11.3.2 |$ 次の式を計算せよ: $\cos \left(-rac{22\pi}{3}
ight)$.

$$\cos\left(-\frac{22\pi}{3}\right) = \cos\left(-\frac{22\pi}{3} + 8\pi\right) = \cos\frac{2\pi}{3} = \cos\left(\frac{\pi}{6} + \frac{\pi}{2}\right) = -\sin\frac{\pi}{6}$$
$$= -\frac{1}{3}.$$

- 次のようにも計算できる:

 $=-\frac{1}{2}$.

- $=\cos\frac{4\pi}{3} = \cos\left(\frac{\pi}{3} + \pi\right) = -\cos\frac{\pi}{3}$
- $\cos\left(-\frac{22\pi}{3}\right) = \cos\frac{22\pi}{3} = \cos\left(\frac{22\pi}{3} 6\pi\right)$

問11.3.2 次の式を計算せよ: $\cos\left(-rac{22\pi}{3}
ight)$.

 $oxed{ extit{例}}$ 次の式を計算する: $anrac{20\pi}{3}$.

例 次の式を計算する:
$$anrac{20\pi}{3}$$
 . $anrac{20\pi}{3}= an\Bigl(rac{20\pi}{3}-
ight.$

$$n$$
 (5

整数
$$n$$
 に対して $\tan x = \tan(x + n\pi)$

例 次の式を計算する:
$$anrac{20\pi}{3}$$
 . $anrac{20\pi}{3}= an\Bigl(rac{20\pi}{3}-7\pi\Bigr)$

$$\tan \frac{20\pi}{3} = \tan \left(\frac{20\pi}{3} - 7\pi\right)$$

整数 n に対して $\tan x = \tan(x + n\pi)$

$$n$$
 $=$

$$n$$
 \vdash

例次の式を計算する:
$$\tan\frac{20\pi}{3}$$
 .
$$\tan\frac{20\pi}{3}=\tan\left(\frac{20\pi}{3}-7\pi\right)=\tan\left(-\frac{\pi}{3}\right)$$

$$\tan(-x)=-\tan x$$

例 次の式を計算する:
$$\tan\frac{20\pi}{3}$$
 .
$$\tan\frac{20\pi}{3}=\tan\left(\frac{20\pi}{3}-7\pi\right)=\tan\left(-\frac{\pi}{3}\right)=-\tan\frac{\pi}{3}$$

$$\tan(-x)=-\tan x$$

$$\tan \frac{20\pi}{3} = \tan \left(\frac{20\pi}{3} - 7\pi\right) = \tan \left(-\frac{\pi}{3}\right) = -\tan \frac{\pi}{3} = -\sqrt{3}$$

 $oxed{ / / / / / / / / / / / / / / } 次の式を計算する:<math> anrac{20\pi}{3}$.

問11.3.3 次の式を計算せよ: $anrac{17\pi}{6}$.

閏11.3.3 次の式を計算せよ:
$$\tan\frac{17\pi}{6}$$
 .
$$\tan\frac{17\pi}{6} = \tan\left(\frac{17\pi}{6} - 3\pi\right) = \tan\left(-\frac{\pi}{6}\right) = -\tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}} .$$

終

 $| \mathbb{B}11.3.4 |$ 次の式を計算せよ: $anigg(-rac{19\pi}{6}igg)$.

問11.3.4 次の式を計算せよ:
$$\tan\left(-\frac{19\pi}{6}\right)$$
 .
$$\tan\left(-\frac{19\pi}{6}\right) = \tan\left(-\frac{19\pi}{6} + 3\pi\right) = \tan\left(-\frac{\pi}{6}\right) = -\tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}} .$$

例 変数 x を含む式 $\cos\left(x + \frac{15\pi}{2}\right)$ のいずれかに変形する.	を,	$\sin x$	か	$\cos x$	か	$-\sin x$	か	$-\cos x$
070 9 1070 12 20 77 10.								

か

かに変形する.
$$\cos\left(x + \frac{15\pi}{2}\right) = \cos\left(x + \frac{15\pi}{2} - 8\pi\right) = \cos\left(x - \frac{\pi}{2}\right) = \sin x.$$

例 変数 x を含む式 $\cos\left(x+rac{15\pi}{2}
ight)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か

のいずれかに変形する.

例 変数
$$x$$
 を含む式 $\cos\left(x+\frac{15\pi}{2}\right)$ を、 $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か のいずれかに変形する。
$$\cos\left(x+\frac{15\pi}{2}\right)=\cos\left(x+\frac{15\pi}{2}-8\pi\right)=\cos\left(x-\frac{\pi}{2}\right)=\sin x \ .$$
 次のようにも計算できる:

のようにも計算できる:
$$\cos\left(x + \frac{15\pi}{2}\right) = \cos\left(x + \frac{15\pi}{2} - 6\pi\right) = \cos\left(x + \frac{3\pi}{2}\right)$$

$$= \cos\left(x + \frac{\pi}{2} + \pi\right) = -\cos\left(x + \frac{\pi}{2}\right) = -(-\sin x)$$

$$= \sin x .$$

$$=\cos\left(x + \frac{\pi}{2} + \pi\right) = -\cos\left(x + \frac{\pi}{2}\right) = -(-\sin x)$$

$$=\cos\left(x+\frac{\pi}{2}+\pi\right)=-\cos\left(x+\frac{\pi}{2}\right)=-(-\sin x)$$

$$=\cos\left(x+\frac{\pi}{2}+\pi\right)=-\cos\left(x+\frac{\pi}{2}\right)=-(-\sin x)$$

$$=\sin x$$
.

$$=\sin x$$
.

$$-\sin x$$
.

例 変数 x を含む式 $\sin\left(x-\frac{17\pi}{2}\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か

に変形する.
$$\sin\left(x - \frac{17\pi}{2}\right) = \sin\left(x - \frac{17\pi}{2} + 8\pi\right) = \sin\left(x - \frac{\pi}{2}\right) = -\cos x.$$

例 変数 x を含む式 $\sin\left(x-\frac{17\pi}{2}\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か

のいずれかに変形する.

例 変数
$$x$$
 を含む式 $\sin\left(x-\frac{17\pi}{2}\right)$ を、 $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か のいずれかに変形する。
$$\sin\left(x-\frac{17\pi}{2}\right)=\sin\left(x-\frac{17\pi}{2}+8\pi\right)=\sin\left(x-\frac{\pi}{2}\right)=-\cos x \ .$$
 次のようにも計算できる:

$$\sin\left(x - \frac{17\pi}{2}\right) = \sin\left(x - \frac{17\pi}{2} + 10\pi\right) = \sin\left(x + \frac{3\pi}{2}\right)$$

$$= \sin\left(x + \frac{\pi}{2} + \pi\right) = \sin\left(x + \frac{\pi}{2}\right)$$

$$= \sin\left(x + \frac{\pi}{2} + \pi\right) = -\sin\left(x + \frac{\pi}{2}\right)$$

$$= \sin\left(x + \frac{x}{2} + \pi\right) = -\sin\left(x + \frac{x}{2}\right)$$
$$= -\cos x.$$

$$= -\cos x .$$

$$=-\cos x$$
.

$$=-\cos x$$
.

閏11.3.5 変数 x を含む式 $\sin\left(x+rac{23\pi}{2}
ight)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か

 $-\cos x$ かのいずれかに変形せよ.

閏11.3.5 変数
$$x$$
 を含む式 $\sin\left(x+\frac{23\pi}{2}\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ かのいずれかに変形せよ.
$$\sin\left(x+\frac{23\pi}{2}\right)=\sin\left(x+\frac{23\pi}{2}-12\pi\right)=\sin\left(x-\frac{\pi}{2}\right)=-\cos x \ .$$

次のようにも計算できる:

$$\sin\left(x + \frac{23\pi}{2}\right) = \sin\left(x + \frac{23\pi}{2} - 10\pi\right) = \sin\left(x + \frac{3\pi}{2}\right)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \sin\left(x + \frac{\pi}{2} - 10\pi\right) = \sin\left(x + \frac{\pi}{2}\right)$$

$$= \sin\left(x + \frac{\pi}{2} + \pi\right) = -\sin\left(x + \frac{\pi}{2}\right)$$

 $=-\cos x$.

$$= \sin\left(x + \frac{\pi}{2} + \pi\right) = -\sin\left(x + \frac{\pi}{2}\right)$$

$$=\sin\left(x+\frac{\pi}{2}+\pi\right)=-\sin\left(x+\frac{\pi}{2}\right)$$

問11.3.6 変数 x を含む式 $\cos\left(x-\frac{21\pi}{2}\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か

 $-\cos x$ かのいずれかに変形せよ.

閏11.3.6 変数
$$x$$
 を含む式 $\cos\left(x-\frac{21\pi}{2}\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ かのいずれかに変形せよ.
$$\cos\left(x-\frac{21\pi}{2}\right)=\cos\left(x-\frac{21\pi}{2}+10\pi\right)=\cos\left(x-\frac{\pi}{2}\right)=\sin x \ .$$

 $=\cos\left(x + \frac{\pi}{2} + \pi\right) = -\cos\left(x + \frac{\pi}{2}\right) = -(-\sin x)$

 $\cos\left(x - \frac{21\pi}{2}\right) = \cos\left(x - \frac{21\pi}{2} + 12\pi\right) = \cos\left(x + \frac{3\pi}{2}\right)$

 $= \sin x$.

次のようにも計算できる:

例 変数 x を含む式 $\cos\left(\frac{15\pi}{2}-x\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ かのいずれかに変形する.

例 変数
$$x$$
 を含む式 $\cos\left(\frac{15\pi}{2} - x\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か のいずれかに変形する.
$$\cos\left(\frac{15\pi}{2} - x\right) = \cos\left\{-\left(x - \frac{15\pi}{2}\right)\right\} = \cos\left(x - \frac{15\pi}{2}\right)$$
$$= \cos\left(x - \frac{15\pi}{2} + 8\pi\right) = \cos\left(x + \frac{\pi}{2}\right)$$

$$= \cos\left(x - \frac{15\pi}{2} + 8\pi\right) = \cos\left(x + \frac{\pi}{2}\right)$$
$$= -\sin x .$$

 $=-\sin x$.

のいずれかに変形する.
$$\cos\left(\frac{15\pi}{2}-x\right)=\cos\left\{-\left(x-\frac{15\pi}{2}\right)\right\}=\cos\left(x-\frac{15\pi}{2}\right)$$

$$=\cos\left(x-\frac{15\pi}{2}+8\pi\right)=\cos\left(x+\frac{\pi}{2}\right)$$

$$=-\sin x \ .$$
 次のようにも計算できる:

 $=-\sin x$.

例 変数 x を含む式 $\cos\left(\frac{15\pi}{2}-x\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ か

 $\cos\left(\frac{15\pi}{2} - x\right) = \cos\left(\frac{15\pi}{2} - x - 8\pi\right) = \cos\left(-x - \frac{\pi}{2}\right)$ $=\cos\{-(x+\frac{\pi}{2})\}=\cos(x+\frac{\pi}{2})$

問11.3.7 変数 x を含む式 $\sin\left(\frac{25\pi}{2}-x\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か

 $-\cos x$ かのいずれかに変形せよ.

閏11.3.7 変数
$$x$$
 を含む式 $\sin\left(\frac{25\pi}{2}-x\right)$ を, $\sin x$ か $\cos x$ か $-\sin x$ か $-\cos x$ かのいずれかに変形せよ.
$$\sin\left(\frac{25\pi}{2}-x\right)=\sin\left(\frac{25\pi}{2}-x-12\pi\right)=\sin\left(\frac{\pi}{2}-x\right)$$

 $\sin\left(\frac{25\pi}{2} - x\right) = -\sin\left(x - \frac{25\pi}{2}\right) = -\sin\left(x - \frac{25\pi}{2} + 12\pi\right)$

 $=-\sin\left(x-\frac{\pi}{2}\right)=-(-\cos x)$

 $=\sin\left(-x+\frac{\pi}{2}\right)=\cos(-x)$

 $=\cos x$. 次のようにも計算できる:

 $=\cos x$.