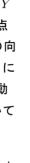
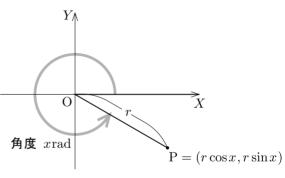
11.4 三角関数のグラフ

次のことを用いる: 実数 x に対して、XY座標平面において原点 ○ を極として X 軸の向

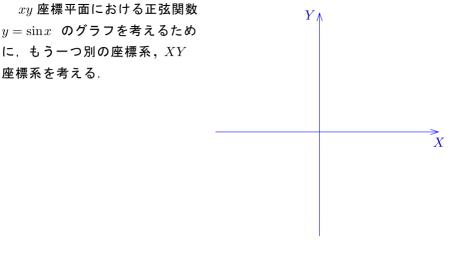


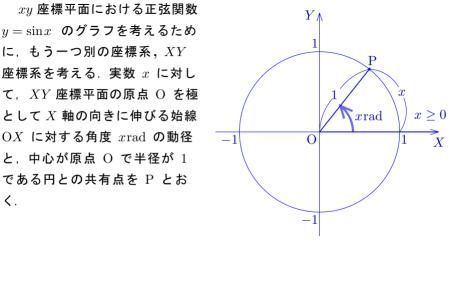
xu 座標平面において三角関数のグラフを描く.

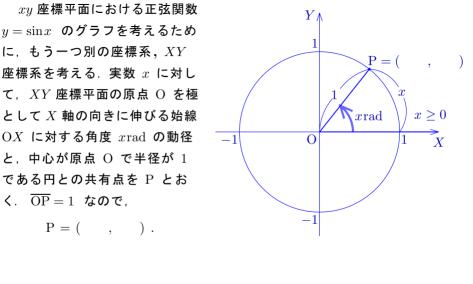
きに伸びる始線 OX に 対する角度 xrad の動 径に属す点 P について $\overline{OP} = r \ \ \,$ とおくと $P = (r \cos x, r \sin x)$.



11.4.1 正弦関数のグラフ

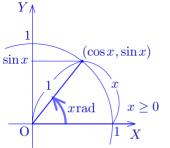


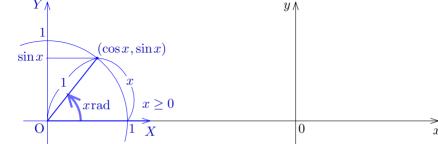




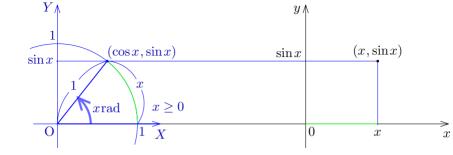
xy 座標平面における正弦関数 $y = \sin x$ のグラフを考えるため に、もう一つ別の座標系、XY $P = (\cos x, \sin x)$ 座標系を考える. 実数 x に対し て、XY 座標平面の原点 O を極 x > 0として X 軸の向きに伸びる始線 xrad OX に対する角度 xrad の動径 と、中心が原点 〇 で半径が 1 である円との共有点を P とお $P = (\cos x, \sin x)$.

xy 座標平面における正弦関数 $y = \sin x$ のグラフを考えるため に、もう一つ別の座標系、XY $P = (\cos x, \sin x)$ $\sin x$ 座標系を考える. 実数 x に対し て、XY 座標平面の原点 O を極 x > 0として X 軸の向きに伸びる始線 xrad OX に対する角度 xrad の動径 と、中心が原点 〇 で半径が 1 である円との共有点を P とお $\langle \overline{OP} = 1 \text{ } xov. \rangle$ $P = (\cos x, \sin x)$. 点 P の Y 座標は $\sin x$ である.





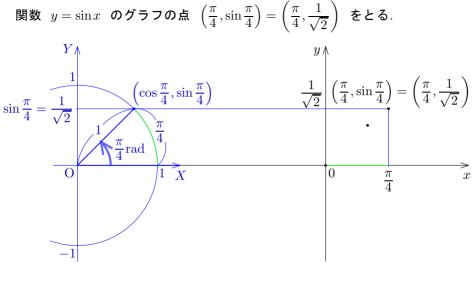
XY 座標系に対して、xy 座標系を次のように定める:x 軸と X 軸とが同じ向きで一直線に重なり、y 軸と Y 軸とが同じ向きである.



XY 座標系に対して、xy 座標系を次のように定める : x 軸と X 軸とが同じ向きで一直線に重なり、y 軸と Y 軸とが同じ向きである。xy 座標平面において、実数 x に対して例えば上図のように点 $(x,\sin x)$ をとる。

関数 $y = \sin x$ のグラフの点 $(0, \sin 0) = (0, 0)$ をとる. Y_{Λ} $y \wedge$ $(0, \sin 0) = (0, 0)$ O X0

関数 $y=\sin x$ のグラフの点 $\left(\frac{\pi}{6},\sin\frac{\pi}{6}\right)=\left(\frac{\pi}{6},\frac{1}{2}\right)$ をとる. $\frac{1}{2} \left| \left(\frac{\pi}{6}, \sin \frac{\pi}{6} \right) = \left(\frac{\pi}{6}, \frac{1}{2} \right) \right|$ $\left(\cos\frac{\pi}{6},\sin\frac{\pi}{6}\right)$ $\sin\frac{\pi}{6} = \frac{1}{2}$ $\frac{\pi}{2}$ rad 0



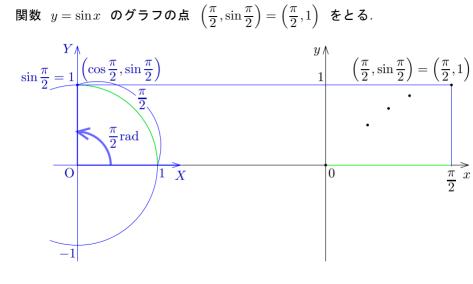
関数
$$y = \sin x$$
 のグラフの点 $\left(\frac{\pi}{3}, \sin \frac{\pi}{3}\right) = \left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$ をとる.
$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3}\right) = \left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$$
 o
$$\frac{\pi}{3} \operatorname{rad}$$

$$0$$

$$\frac{\pi}{3} \operatorname{rad}$$

$$0$$

$$\frac{\pi}{3} \operatorname{rad}$$



関数 $y=\sin x$ のグラフの点 $\left(-\frac{\pi}{6},\sin\left(-\frac{\pi}{6}\right)\right)=\left(-\frac{\pi}{6},-\frac{1}{2}\right)$ をとる. $\frac{\pi}{2}$ rad

$$\sin\left(-\frac{\pi}{6}\right) \stackrel{\text{O}}{=} -\frac{\pi}{6} \\ = -\frac{1}{2} \\ \left(\cos\left(-\frac{\pi}{6}\right), \sin\left(-\frac{\pi}{6}\right)\right) \\ \left(-\frac{\pi}{6}, \sin\left(-\frac{\pi}{6}\right)\right) = \left(-\frac{\pi}{6}, -\frac{1}{2}\right)$$

関数 $y = \sin x$ のグラフの点 $\left(-\frac{\pi}{4}, \sin\left(-\frac{\pi}{4}\right)\right) = \left(-\frac{\pi}{4}, -\frac{1}{\sqrt{2}}\right)$ $\left(\cos\left(-\frac{\pi}{4}\right),\sin\left(-\frac{\pi}{4}\right)\right)\left(-\frac{\pi}{4},\sin\left(-\frac{\pi}{4}\right)\right) = \left(-\frac{\pi}{4},-\frac{1}{\sqrt{2}}\right)$

関数
$$y = \sin x$$
 のグラフの点 $\left(-\frac{\pi}{3}, \sin\left(-\frac{\pi}{3}\right)\right) = \left(-\frac{\pi}{3}, -\frac{\sqrt{3}}{2}\right)$ をとる.
$$\frac{Y}{1}$$

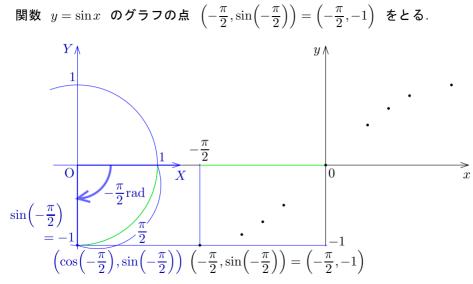
$$\frac{-\frac{\pi}{3}}{3}$$

$$= -\frac{\sqrt{3}}{2}$$

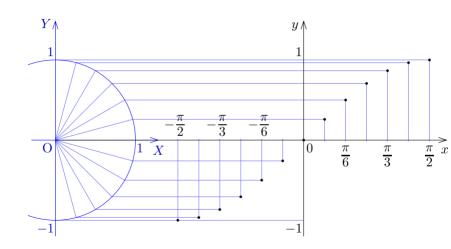
$$= -\frac{\sqrt{3}}{2}$$

$$= -\frac{\sqrt{3}}{2}$$

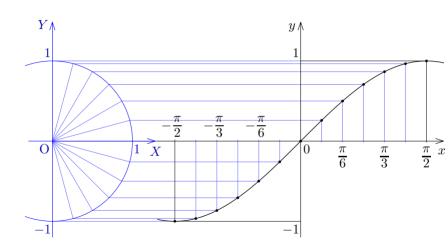
$$= -\frac{\pi}{3}$$



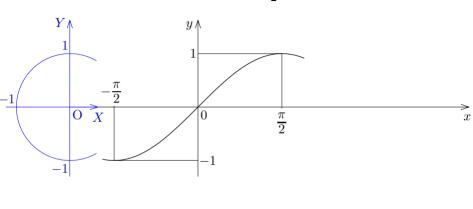
xy 座標平面における正弦関数 $y=\sin x$ のグラフに下図の点が属す.

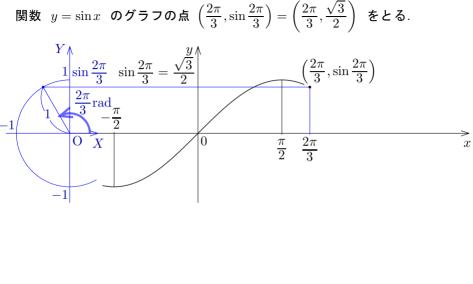


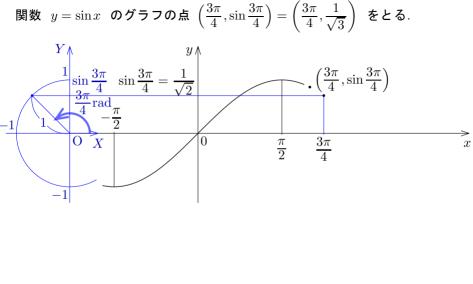
xy 座標平面における正弦関数 $y = \sin x$ のグラフは下図のようになる.

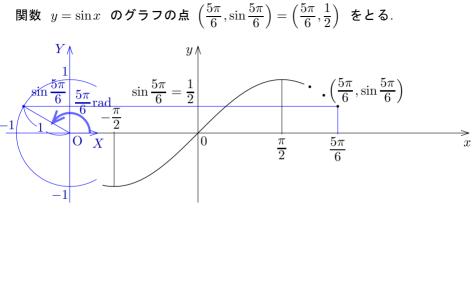


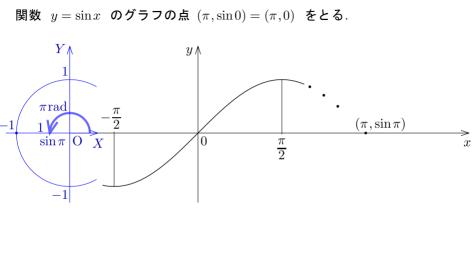
更に関数 $y=\sin x$ のグラフで x座標が $\frac{\pi}{2}$ より大きい部分を考える.

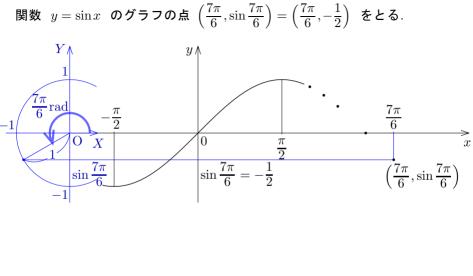


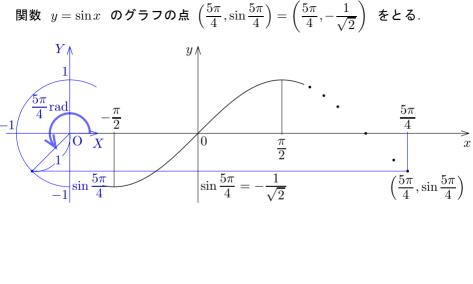


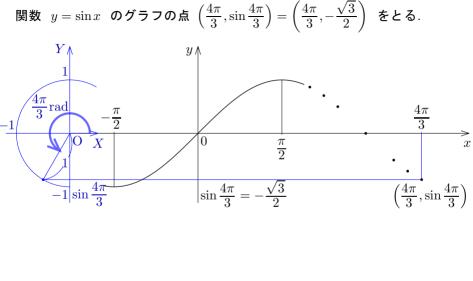


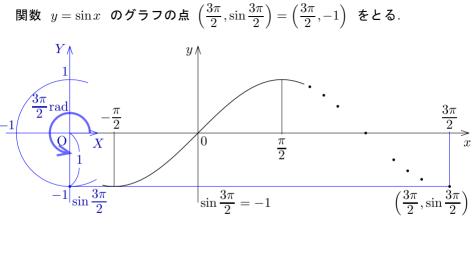




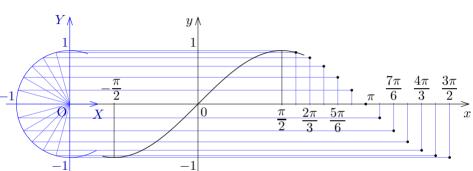




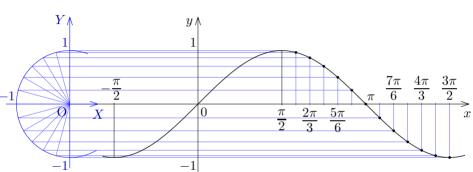




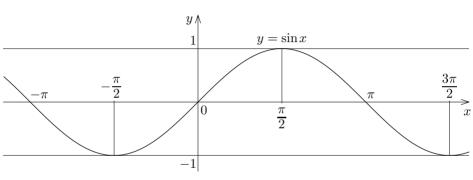
xy 座標平面における正弦関数 $y=\sin x$ のグラフに下図の点が属す.



xy 座標平面における正弦関数 $y=\sin x$ のグラフは下図のようになる.



xy 座標平面における正弦関数 $y=\sin x$ のグラフは下図のようになる.



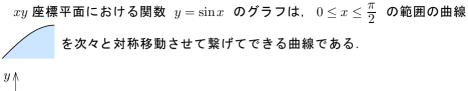
 $y \wedge$ $y = \sin x$

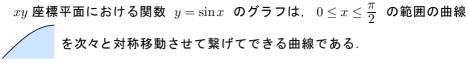
xy 座標平面における正弦関数 $y = \sin x$ のグラフは次のようになる.

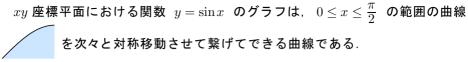
正弦関数 $\sin x$ は奇関数なので、 $y = \sin x$ のグラフは原点に関して対称な 曲線である. $y = \sin x$ のグラフの形の曲線を正弦曲線という.

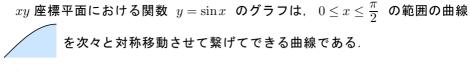
xy 座標平面における関数 $y=\sin x$ のグラフは、 $0\leq x\leq \frac{\pi}{2}$ の範囲の曲線

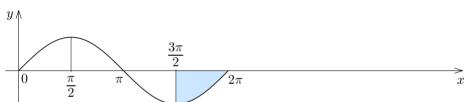
を次々と対称移動させて繋げてできる曲線である.

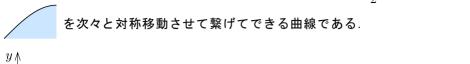




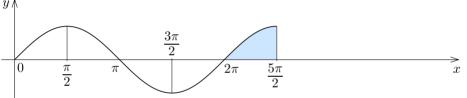


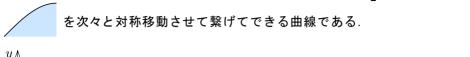




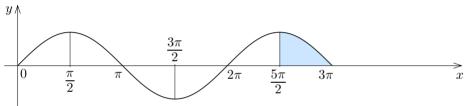


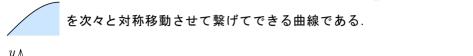
xy 座標平面における関数 $y=\sin x$ のグラフは、 $0\leq x\leq \frac{\pi}{2}$ の範囲の曲線



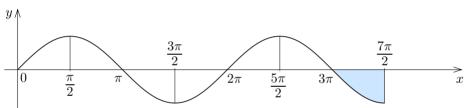


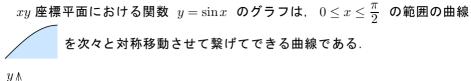
xy 座標平面における関数 $y=\sin x$ のグラフは、 $0\leq x\leq \frac{\pi}{2}$ の範囲の曲線

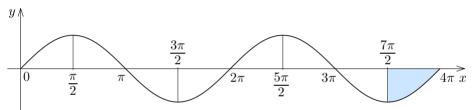


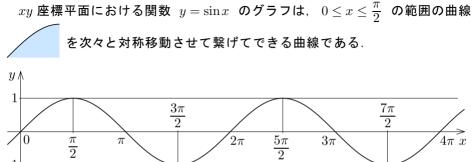


xy 座標平面における関数 $y=\sin x$ のグラフは、 $0\leq x\leq \frac{\pi}{2}$ の範囲の曲線

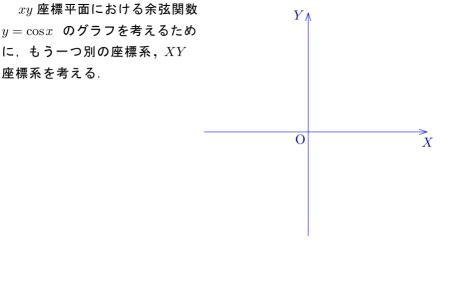


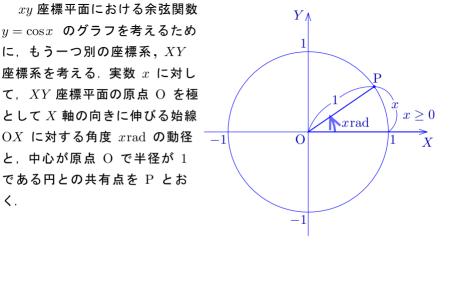


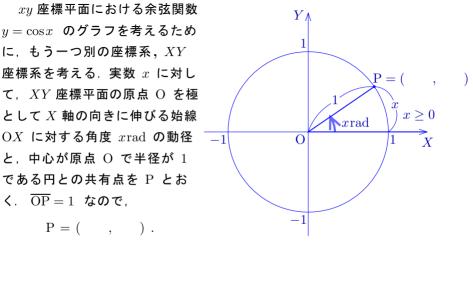


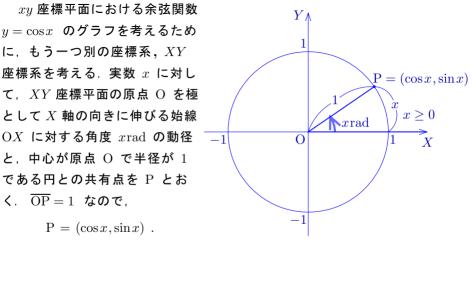


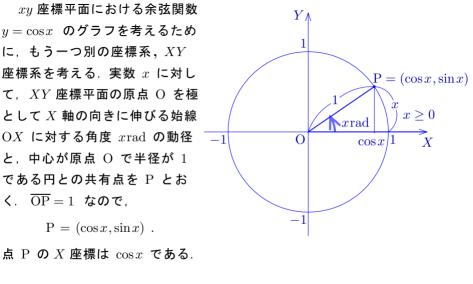
11.4.2 余弦関数のグラフ

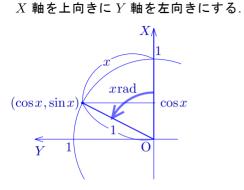




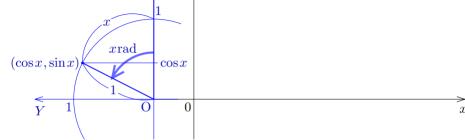








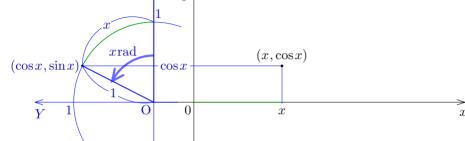
X 軸を上向きに Y 軸を左向きにする. $y \wedge$



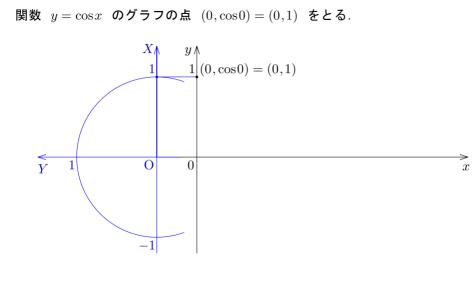
XY 座標系に対して、xy 座標系を次のように定める:x 軸と Y 軸とは一直

線に重なり向きが反対であり、y 軸と X 軸とが同じ向きである。

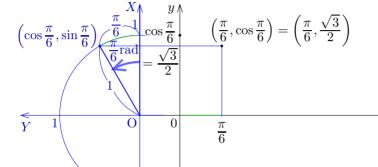
X 軸を上向きに Y 軸を左向きにする. $X_{ \wedge } \qquad y_{ \wedge }$ 1

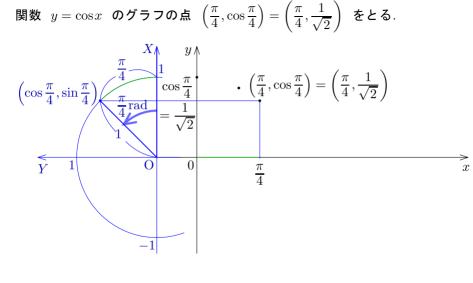


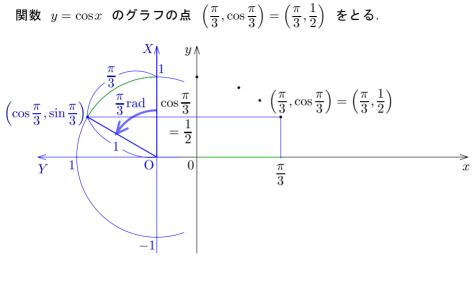
XY 座標系に対して、xy 座標系を次のように定める:x 軸と Y 軸とは一直線に重なり向きが反対であり、y 軸と X 軸とが同じ向きである。xy 座標平面において、実数 x に対して例えば上図のように点 $(x,\cos x)$ をとる。

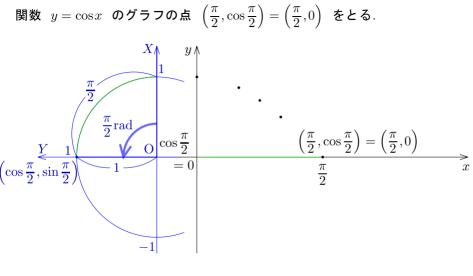


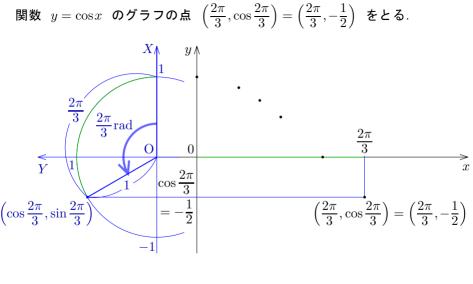
関数 $y = \cos x$ のグラフの点 $\left(\frac{\pi}{6}, \cos \frac{\pi}{6}\right) = \left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right)$ をとる.

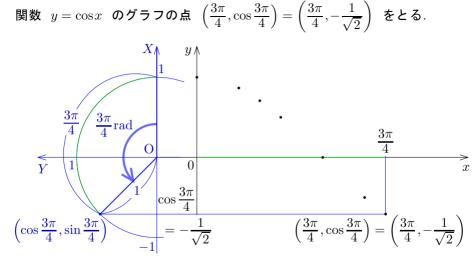




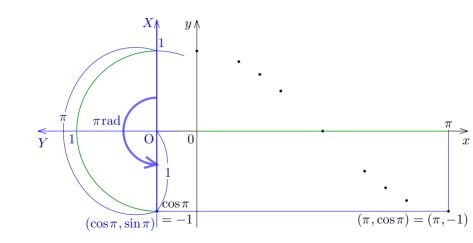




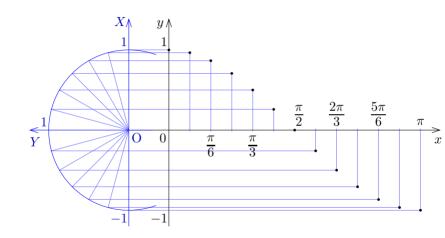




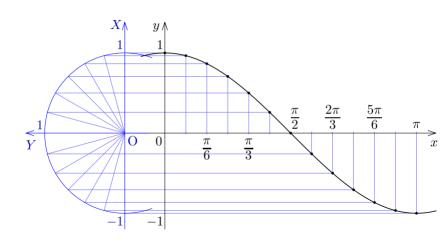
関数 $y = \cos x$ のグラフの点 $\left(\frac{5\pi}{6}, \cos \frac{5\pi}{6}\right) = \left(\frac{5\pi}{6}, -\frac{\sqrt{3}}{2}\right)$ をとる. $\frac{5\pi}{6}$ rad $\left(\frac{5\pi}{6}, \cos\frac{5\pi}{6}\right) = \left(\frac{5\pi}{6}, -\frac{\sqrt{3}}{2}\right)$ 関数 $y = \cos x$ のグラフの点 $(\pi, \cos \pi) = (\pi, -1)$ をとる.



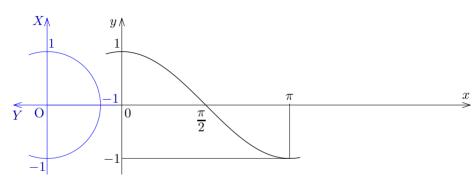
xy 座標平面における余弦関数 $y = \cos x$ のグラフに下図の点が属す.



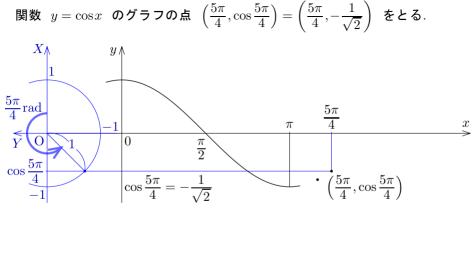
xy 座標平面における余弦関数 $y = \cos x$ のグラフは下図のようになる.

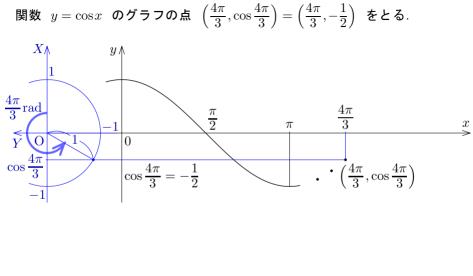


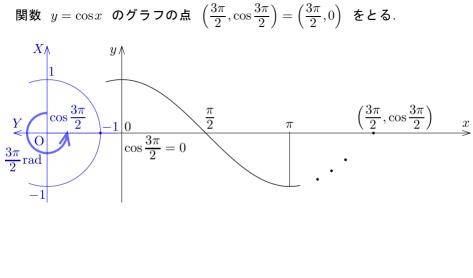
更に関数 $y = \cos x$ のグラフで x 座標が π より大きい部分を考える.

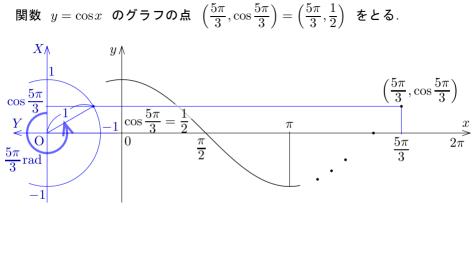


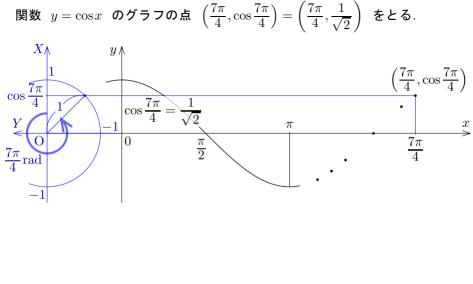
関数
$$y=\cos x$$
 のグラフの点 $\left(\frac{7\pi}{6},\cos\frac{7\pi}{6}\right)=\left(\frac{7\pi}{6},-\frac{\sqrt{3}}{2}\right)$ をとる.
$$\frac{X}{6}$$
 rad
$$\frac{y}{Y}$$
 0 1 $\frac{\pi}{6}$ rad
$$\cos\frac{7\pi}{6}=-\frac{\sqrt{3}}{2}$$
 $\left(\frac{7\pi}{6},\cos\frac{7\pi}{6}\right)$

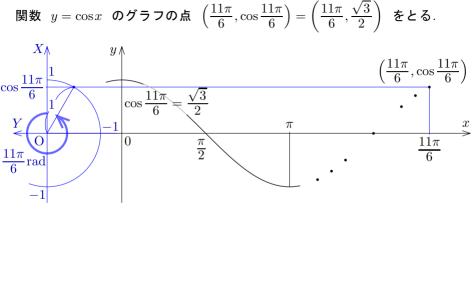




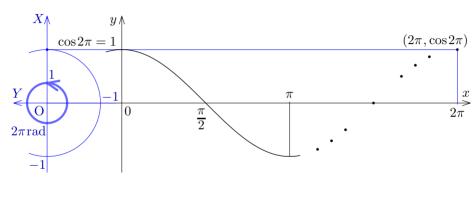




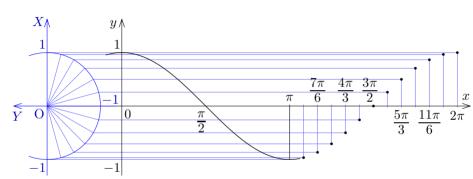




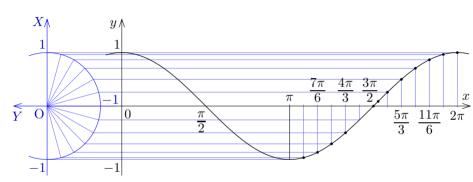
関数 $y = \cos x$ のグラフの点 $(2\pi, \cos 2\pi) = (2\pi, 1)$ をとる.



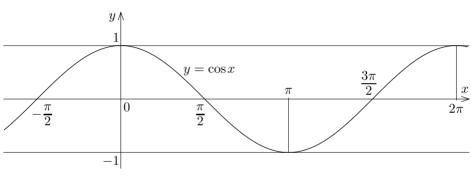
xy 座標平面における余弦関数 $y = \cos x$ のグラフに下図の点が属す.



xy 座標平面における余弦関数 $y = \cos x$ のグラフは下図のようになる.



xy 座標平面における余弦関数 $y=\cos x$ のグラフは下図のようになる.



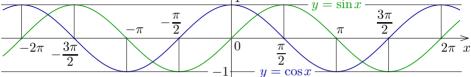
 $y \wedge$

xy 座標平面における余弦関数 $y = \cos x$ のグラフは次のようになる.

余弦関数 $\cos x$ は偶関数なので、 $y = \cos x$ のグラフは y 軸に関して対称な

曲線である.

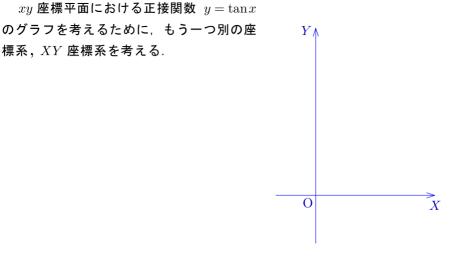
xy 座標平面における余弦関数 $y = \cos x$ のグラフは次のようになる. $y \wedge$ $= \sin x$



$$-1$$
 $y = \cos x$ のグラフは正弦関数 $y = \sin x$ のグラフを x 軸の向き

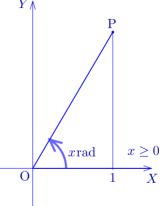
に $-\frac{\pi}{2}$ だけ平行移動させた曲線である.

11.4.3 正接関数のグラフ

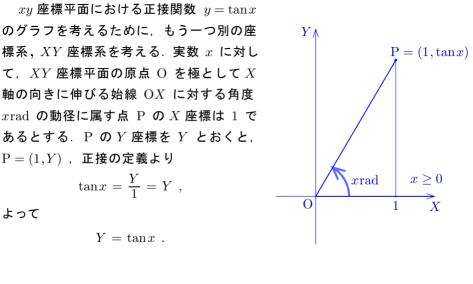


のグラフを考えるために、もう一つ別の座 標系、XY 座標系を考える. 実数 x に対し て. XY 座標平面の原点 O を極として X 軸の向きに伸びる始線 OX に対する角度 xrad の動径に属す点 P の X 座標は 1 で あるとする.

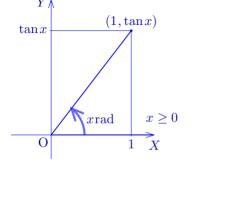
xy 座標平面における正接関数 $y = \tan x$

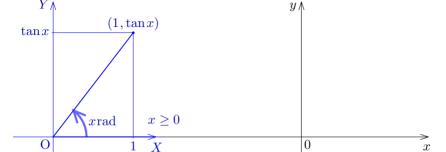


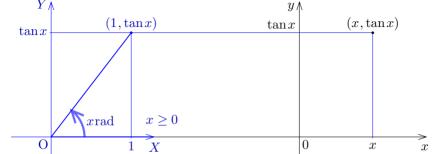
xy 座標平面における正接関数 $y = \tan x$ のグラフを考えるために、もう一つ別の座 標系、XY 座標系を考える. 実数 x に対し P = (1, Y)て. XY 座標平面の原点 O を極として X 軸の向きに伸びる始線 OX に対する角度 xrad の動径に属す点 P の X 座標は 1 で あるとする. P の Y 座標を Y とおくと. P = (1,Y), 正接の定義より xrad $x \ge 0$ $\tan x = =$



xy 座標平面における正接関数 $y = \tan x$ のグラフを考えるために、もう一つ別の座 Y_{Λ} 標系、XY 座標系を考える. 実数 x に対し $P = (1, \tan x)$ $\tan x$ て. XY 座標平面の原点 ○ を極として X 軸の向きに伸びる始線 OX に対する角度 xrad の動径に属す点 P の X 座標は 1 で あるとする. P の Y 座標を Y とおくと. P = (1,Y), 正接の定義より $\tan x = \frac{Y}{1} = Y ,$ xrad $x \ge 0$ よって $Y = \tan x$. 従って点 P の Y 座標は tan x である.



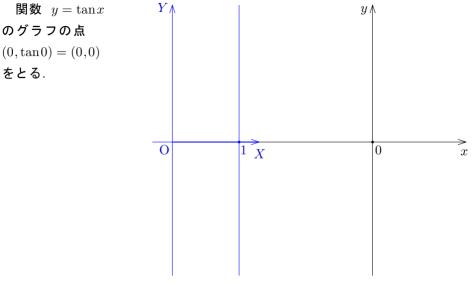


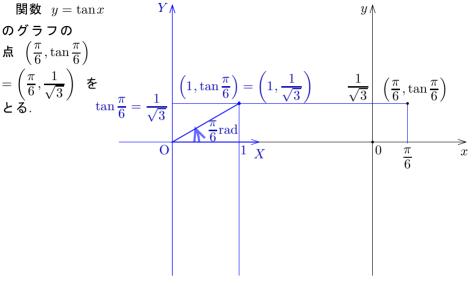


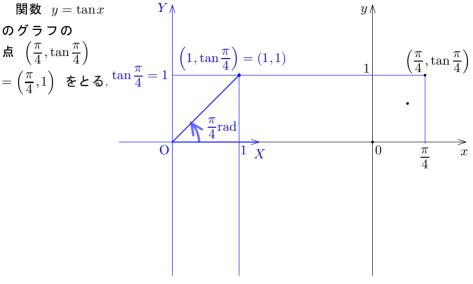
XY 座標系に対して,xy 座標系を次のように定める:x 軸と X 軸とが同じ

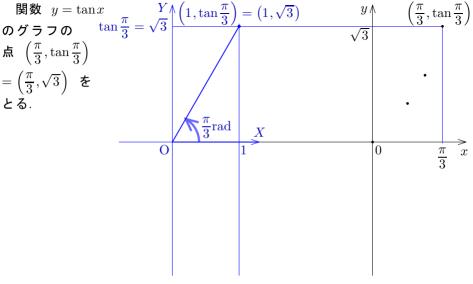
向きで一直線に重なり、y軸とY軸とが同じ向きである。xy座標平面におい

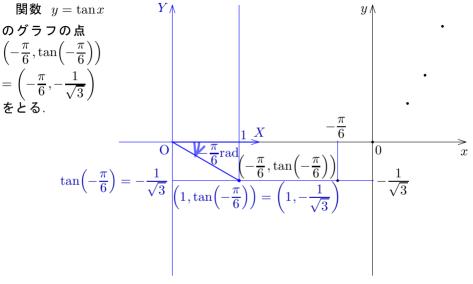
て、実数 x に対して例えば上図のように点 $(x, \tan x)$ をとる.

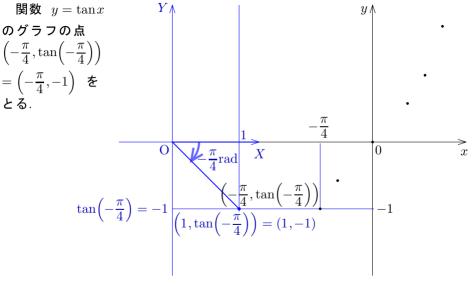




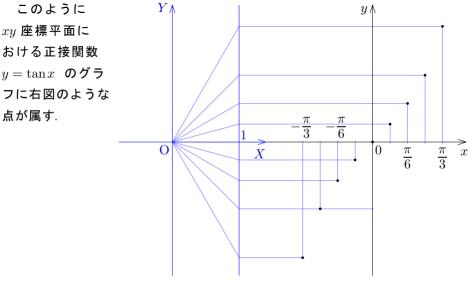


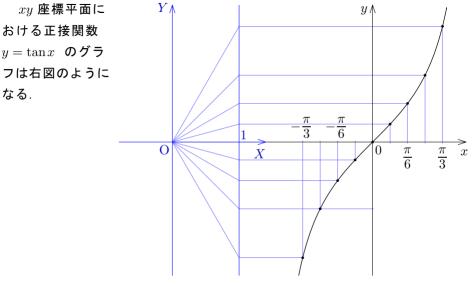


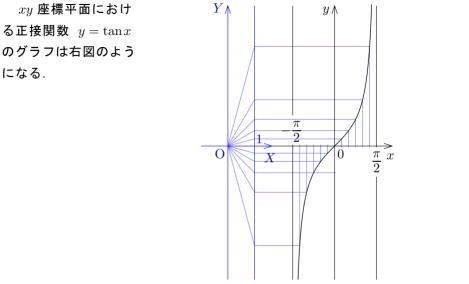


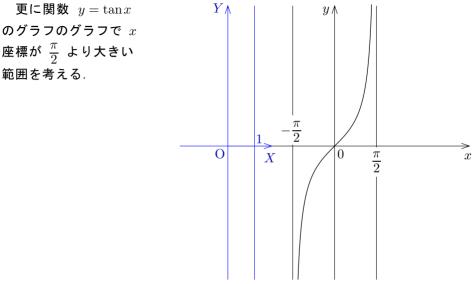


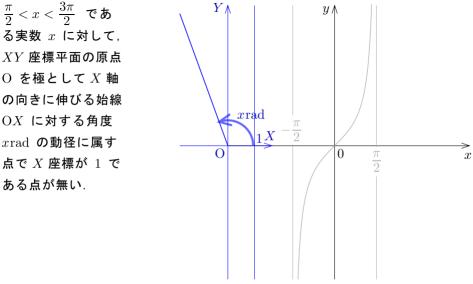
関数
$$y=\tan x$$
 y のグラフの点 $\left(-\frac{\pi}{3},\tan\left(-\frac{\pi}{3}\right)\right)$ $=\left(-\frac{\pi}{3},-\sqrt{3}\right)$ を とる.
$$1 \frac{x}{3} = -\sqrt{3}$$
 $\tan\left(-\frac{\pi}{3}\right) = -\sqrt{3}$ $\tan\left(-\frac{\pi}{3}\right) = 1$ $\tan\left(-\frac{\pi}{3}\right) = 1$ $\tan\left(-\frac{\pi}{3}\right) = 1$ $\tan\left(-\frac{\pi}{3}\right) = 1$ $\tan\left(-\frac{\pi}{3}\right) = 1$

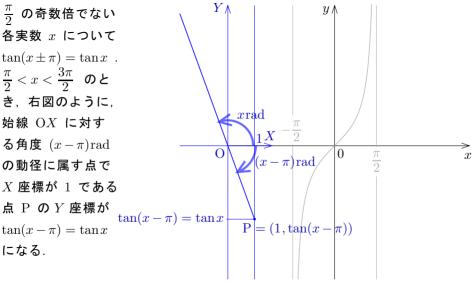


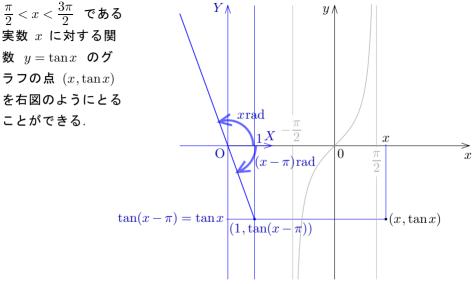


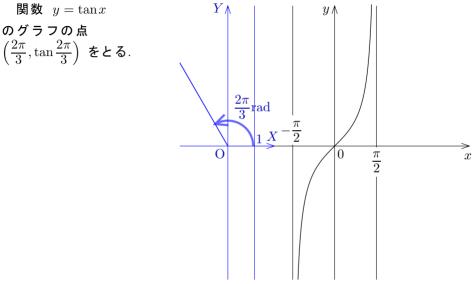


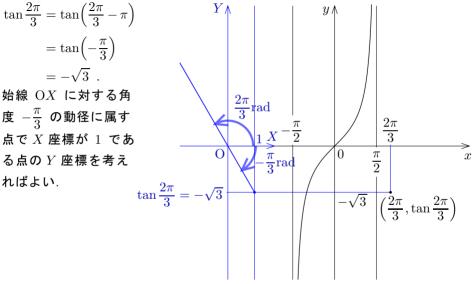


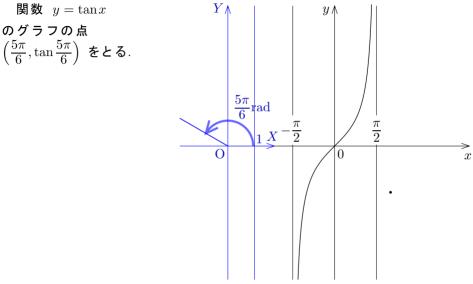


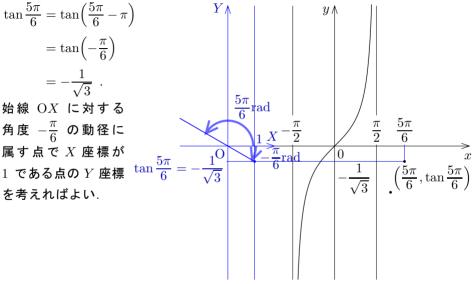


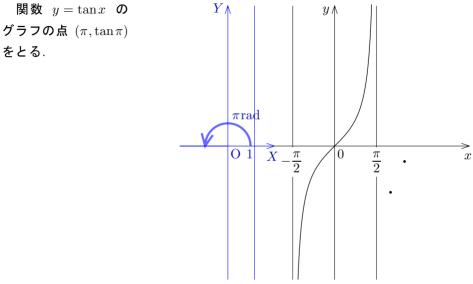


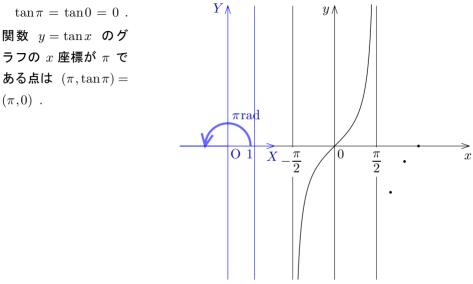


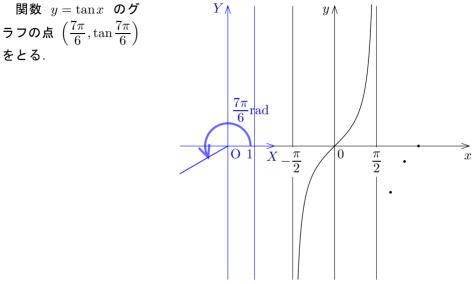


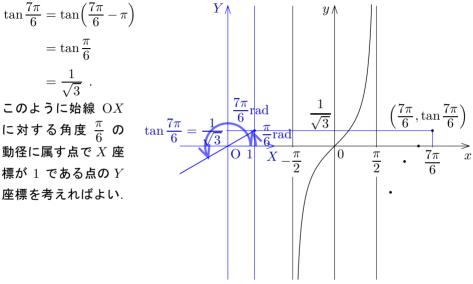


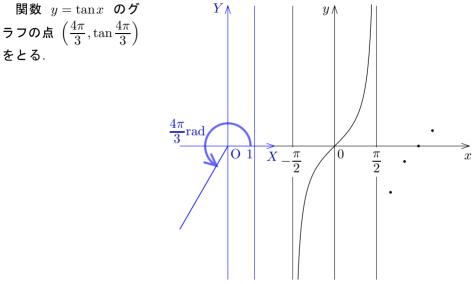


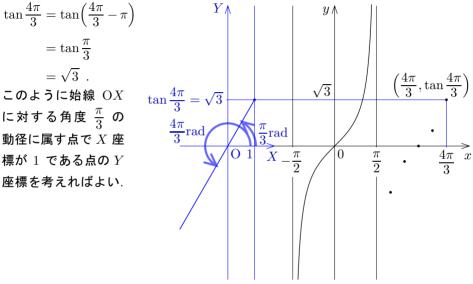


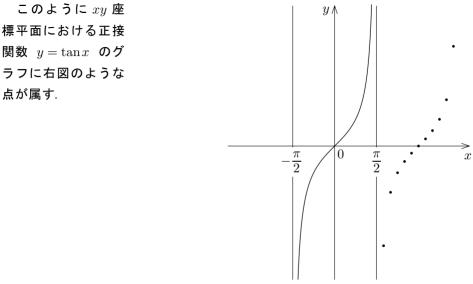


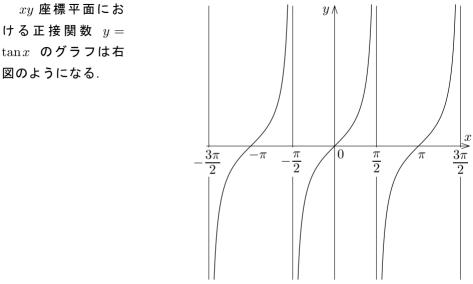


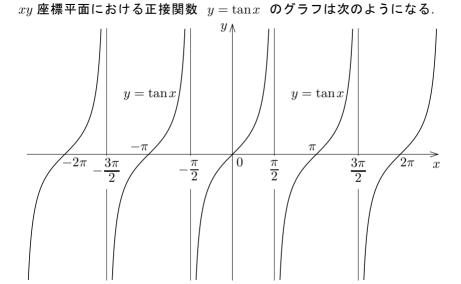












正接関数 an x は奇関数なので、 y = an x のグラフは原点に関して対称な曲線である.