11.9 三角関数の諸公式

任意の一般角 lpha,eta について、正弦の加法定理より、 $\sin(lpha\pmeta)=\sinlpha\coseta\pm\coslpha\sineta$ (複号同順).

角度
$$lpha,eta$$
 は度数法で表しても弧度法で表してもよい.

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (複号同順). 任意の実数 a に対する一般角 arad 及び任意の実数 b に対する一般角 brad

について.

任意の一般角 α,β について、正弦の加法定理より、

 $\sin(a \operatorname{rad} \pm b \operatorname{rad}) = \sin(a \operatorname{rad}) \cos(b \operatorname{rad}) \pm \cos(a \operatorname{rad}) \sin(b \operatorname{rad})$ (複号同順).

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (複号同順). 任意の実数 a に対する一般角 arad 及び任意の実数 b に対する一般角 brad

任意の一般角 α,β について、正弦の加法定理より、

について. $\sin(a \operatorname{rad} \pm b \operatorname{rad}) = \sin(a \operatorname{rad}) \cos(b \operatorname{rad}) \pm \cos(a \operatorname{rad}) \sin(b \operatorname{rad})$ (複号同順).

ここで

 $\sin(a \operatorname{rad} \pm b \operatorname{rad}) = \sin\{(a \pm b) \operatorname{rad}\} = \sin(a \pm b)$ (複号同順),

 $\sin(a \operatorname{rad}) = \sin a$, $\cos(a \operatorname{rad}) = \cos a$,

 $\sin(b \operatorname{rad}) = \sin b$, $\cos(b \operatorname{rad}) = \cos b$,

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (複号同順). 任意の実数 a に対する一般角 arad 及び任意の実数 b に対する一般角 brad

任意の一般角 α, β について、正弦の加法定理より、

について. $\sin(a \operatorname{rad} \pm b \operatorname{rad}) = \sin(a \operatorname{rad}) \cos(b \operatorname{rad}) \pm \cos(a \operatorname{rad}) \sin(b \operatorname{rad})$ (複号同順).

ここで

 $\sin(a \operatorname{rad} \pm b \operatorname{rad}) = \sin\{(a \pm b) \operatorname{rad}\} = \sin(a \pm b)$ (複号同順), $\sin(a \operatorname{rad}) = \sin a$, $\cos(a \operatorname{rad}) = \cos a$,

 $\sin(b \operatorname{rad}) = \sin b$, $\cos(b \operatorname{rad}) = \cos b$,

よって

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ (複号同順).

任意の一般角 lpha,eta について、余弦の加法定理より、 $\cos(lpha\pmeta)=\coslpha\coseta\mp\sinlpha\sineta$ (複号同順)、角度 lpha,eta は度数法で表しても弧度法で表してもよい。

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ (複号同順). 任意の実数 a に対する一般角 arad 及び任意の実数 b に対する一般角 brad

任意の一般角 α,β について、余弦の加法定理より、

 $\cos(a \operatorname{rad} \pm b \operatorname{rad}) = \cos(a \operatorname{rad}) \cos(b \operatorname{rad}) \mp \sin(a \operatorname{rad}) \sin(b \operatorname{rad})$ (複号同順).

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ (複号同順). 任意の実数 a に対する一般角 arad 及び任意の実数 b に対する一般角 brad

任意の一般角 α, β について、余弦の加法定理より、

$$\cos(a\operatorname{rad}\pm b\operatorname{rad}) = \cos(a\operatorname{rad})\cos(b\operatorname{rad})\mp\sin(a\operatorname{rad})\sin(b\operatorname{rad})$$
 (複号同順).

$$\cos(a\operatorname{rad}\pm b\operatorname{rad})=\cos(a\operatorname{rad})\cos(b\operatorname{rad})\mp\sin(a\operatorname{rad})\sin(b\operatorname{rad})$$
 (復号同順).

$$\cos(a\operatorname{rad}\pm b\operatorname{rad})=\cos\{(a\pm b)\operatorname{rad}\}=\cos(a\pm b)$$
 (複号同順),

$$\cos(a\operatorname{rad}\pm b\operatorname{rad})=\cos\{(a\pm b)\operatorname{rad}\}=\cos(a\pm b)$$
 (複号同順),

$$\cos(a\operatorname{rad}\pm b\operatorname{rad}) = \cos\{(a\pm b)\operatorname{rad}\} = \cos(a\pm b)$$
 (複号同順),
$$\sin(a\operatorname{rad}) = \sin a \ , \qquad \cos(a\operatorname{rad}) = \cos a \ ,$$

 $\sin(b \operatorname{rad}) = \sin b$, $\cos(b \operatorname{rad}) = \cos b$,

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ (複号同順). 任意の実数 a に対する一般角 arad 及び任意の実数 b に対する一般角 brad

任意の一般角 α, β について、余弦の加法定理より、

について. $\cos(a \operatorname{rad} \pm b \operatorname{rad}) = \cos(a \operatorname{rad}) \cos(b \operatorname{rad}) \mp \sin(a \operatorname{rad}) \sin(b \operatorname{rad})$ (複号同順).

ここで

 $\cos(a \operatorname{rad} \pm b \operatorname{rad}) = \cos\{(a \pm b) \operatorname{rad}\} = \cos(a \pm b)$ (複号同順), $\sin(a \operatorname{rad}) = \sin a$, $\cos(a \operatorname{rad}) = \cos a$,

 $\sin(b \operatorname{rad}) = \sin b$, $\cos(b \operatorname{rad}) = \cos b$,

よって $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ (複号同順). の値があるとき,正接の加法定理より, $an(lpha\pmeta)=rac{ anlpha\pm aneta}{1\mp anlpha aneta}$ (複号同順). 角度 lpha,eta は度数法で表しても弧度法で表してもよい.

一般角 α, β について、 $\tan \alpha$ 、 $\tan \beta$ 、及び $\tan(\alpha + \beta)$ あるいは $\tan(\alpha - \beta)$

の値があるとき,正接の加法定理より,
$$an(lpha\pmeta)=rac{ anlpha\pm aneta}{1\mp anlpha aneta}$$
 (複号同順).
実数 a に対する一般角 $a\mathrm{rad}$ 及び実数 b に対する一般角 $b\mathrm{rad}$ について,

一般角 α, β について、 $\tan \alpha$, $\tan \beta$, 及び $\tan(\alpha + \beta)$ あるいは $\tan(\alpha - \beta)$

tan(arad), tan(brad), 及び tan(arad + brad) あるいは tan(arad - brad) の値 があるとき.

$$an(a \operatorname{rad} \pm b \operatorname{rad}) = rac{ an(a \operatorname{rad}) \pm an(b \operatorname{rad})}{1 \mp an(a \operatorname{rad}) an(b \operatorname{rad})}$$
 (複号同順

(複号同順).

の値があるとき、正接の加法定理より、
$$\tan(\alpha\pm\beta) = \frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} \quad (複号同順) \; .$$
 実数 a に対する一般角 a rad 及び実数 b に対する一般角 b rad について、 $\tan(a$ rad)、 $\tan(b$ rad)、 Δ び $\tan(a$ rad+ b rad) あるいは $\tan(a$ rad- b rad) の値があるとき、

一般角 α, β について、 $\tan \alpha$ 、 $\tan \beta$ 、及び $\tan(\alpha + \beta)$ あるいは $\tan(\alpha - \beta)$

 $\tan(a\operatorname{rad} \pm b\operatorname{rad}) = \frac{\tan(a\operatorname{rad}) \pm \tan(b\operatorname{rad})}{1 \mp \tan(a\operatorname{rad}) \tan(b\operatorname{rad})}$ (複号同順). ここで.

 $\tan(a\operatorname{rad} \pm b\operatorname{rad}) = \tan\{(a \pm b)\operatorname{rad}\} = \tan(a \pm b)$ (複号同順),

tan(arad) = tan a, tan(brad) = tan b,

の値があるとき、正接の加法定理より、
$$\tan(\alpha\pm\beta) = \frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} \quad (複号同順) \; .$$
 実数 a に対する一般角 a rad 及び実数 b に対する一般角 b rad について、
$$\tan(a\mathrm{rad}) \; , \; \tan(b\mathrm{rad}) \; , \; \Delta U \; \tan(a\mathrm{rad}+b\mathrm{rad}) \;$$
あるいは $\tan(a\mathrm{rad}-b\mathrm{rad}) \;$ の値があるとき、
$$\tan(a\mathrm{rad}\pm b\mathrm{rad}) = \frac{\tan(a\mathrm{rad})\pm\tan(b\mathrm{rad})}{1\mp\tan(a\mathrm{rad})\tan(b\mathrm{rad})} \quad (複号同順) \; .$$
 ここで、

一般角 α, β について、 $\tan \alpha$ 、 $\tan \beta$ 、及び $\tan(\alpha + \beta)$ あるいは $\tan(\alpha - \beta)$

ここで, $\tan(a\operatorname{rad} \pm b\operatorname{rad}) = \tan\{(a \pm b)\operatorname{rad}\} = \tan(a \pm b)$ (複号同順),

tan(arad) = tan a, tan(brad) = tan b,

$$\tan(a \operatorname{rad}) = \tan a$$
, $\tan(b \operatorname{rad}) = \tan b$,

よって
$$\tan(a\pm b) = \frac{\tan a \pm \tan b}{1\mp \tan a \tan b} \quad (複号同順) \; .$$

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ (複号同順), $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ (複号同順).

[定理正弦関数・余弦関数の加法定理] 任意の実数 a と b とについて,

[定理正接関数の加法定理] 実数 a と b とについて、tan a , tan b , 及び

 $\tan(a+b)$ あるいは $\tan(a-b)$ の値があるとき、

 $\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$ (複号同順).

これらの三角関数の加法定理は覚えること.

|例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.

例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.
$$\sin^2 x = 1 - \cos^2 x =$$

$$x =$$

例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.

$$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16} ,$$

$$3\pi \le x \le 4\pi$$
 より $\sin x$ 0 なので、

$$\sin x \le 4\pi$$
 & $\sin x = 0$ $\sin x = 0$

例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.

 $\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}$

$$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right) = 1 - \frac{3}{16} = \frac{7}{16}$$
, $3\pi \le x \le 4\pi$ より $\sin x \le 0$ なので,______

$$\leq 4\pi$$
 より $\sin x \leq 0$ なので、 $\sin x = -\sqrt{rac{7}{16}} = -rac{\sqrt{7}}{4}$.

	$\sin x = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \ .$
--	---

例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.

 $\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}$

$$3\pi \leq x \leq 4\pi$$
 より $\sin x \leq 0$ なので, $\sin x = -\sqrt{\frac{7}{12}} = -\frac{\sqrt{7}}{2}$.

 $\sin x = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}$.

$$\sin x = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \ .$$

また.

$$\cos^2 u = 1 - \sin^2 u =$$

$$\cos^2 y = 1 - \sin^2 y =$$

$$\cos^2 y = 1 - \sin^2 y =$$

例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.
$$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16} ,$$

 $3\pi \le x \le 4\pi$ より $\sin x \le 0$ なので、

 $\sin x = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}$.

 $\cos y =$

 $\cos^2 y = 1 - \sin^2 y = 1 - \left(-\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}$

 $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$ より $\cos y = 0$ なので、

例 実数
$$x$$
 について $3\pi \le x \le 4\pi$, $\cos x = \frac{3}{4}$ とする. 実数 y について $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$, $\sin y = -\frac{1}{3}$ とする. $\sin(x+y)$ 及び $\cos(x+y)$ を計算する.
$$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16} \; ,$$
 $3\pi \le x \le 4\pi$ より $\sin x \le 0$ なので,
$$\sin x = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \; .$$

 $\cos^2 y = 1 - \sin^2 y = 1 - \left(-\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}$

 $\cos y = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$.

また,

 $\frac{3\pi}{2} \le y \le \frac{5\pi}{2}$ より $\cos y \ge 0$ なので、

$$\sin x = -\frac{\sqrt{7}}{4}$$
, $\cos x = \frac{3}{4}$, $\sin y = -\frac{1}{3}$, $\cos y = \frac{2\sqrt{2}}{3}$.

正弦関数の加法定理より、
$$\sin(x+y) = \sin x \cos y + \cos x \sin y = -\frac{\sqrt{7}}{4} \frac{2\sqrt{2}}{2} + \frac{3}{4} \left(-\frac{1}{3}\right)$$

 $\sin x = -\frac{\sqrt{7}}{4}$, $\cos x = \frac{3}{4}$, $\sin y = -\frac{1}{3}$, $\cos y = \frac{2\sqrt{2}}{3}$.

$$\sin(x+y) = \sin x \cos y + \cos x + \cos y + \cos x$$
$$= -\frac{\sqrt{14}}{6} - \frac{1}{4}.$$

$$\sin(x)$$

正弦関数の加法定理より、
$$\sin(x+y) = \sin x \cos y + \cos x \sin y = -\frac{\sqrt{7}}{4} \frac{2\sqrt{2}}{3} + \frac{3}{4} \left(-\frac{1}{3}\right)$$

$$= -\frac{\sqrt{14}}{c} - \frac{1}{4} \ .$$

 $\sin x = -\frac{\sqrt{7}}{4}$, $\cos x = \frac{3}{4}$, $\sin y = -\frac{1}{3}$, $\cos y = \frac{2\sqrt{2}}{3}$.

余弦関数の加法定理より.

$$\cos(x+y) = \cos x \cos y - \sin x \sin y = \frac{3}{4} \frac{2\sqrt{2}}{3} + \left(-\frac{\sqrt{7}}{4}\right) \left(-\frac{1}{3}\right)$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{7}}{12} .$$

閏
$$11.9.1$$
 実数 a について $\frac{5\pi}{2} \leq a \leq \frac{7\pi}{2}$, $\sin a = \frac{5}{6}$ とする. 実数 b について $2\pi \leq b \leq 3\pi$, $\cos b = -\frac{2}{3}$ とする. $\sin(a+b)$ 及び $\cos(a+b)$ を計算せよ.
$$\cos^2 a = \frac{5\pi}{2} \leq a \leq \frac{7\pi}{2}$$
 より $\cos a = 0$ なので,
$$\cos a = \pm t$$
,

 $\sin^2 b =$

$$\sin b = 0$$
 $0 < b < 3\pi$ \$9 $\sin b$

 $2\pi \le b \le 3\pi$ より $\sin b$ 0 なので、

 $\sin b =$

閏11.9.1 実数
$$a$$
 について $\frac{5\pi}{2} \le a \le \frac{7\pi}{2}$, $\sin a = \frac{5}{6}$ とする. 実数 b について $2\pi \le b \le 3\pi$, $\cos b = -\frac{2}{3}$ とする. $\sin(a+b)$ 及び $\cos(a+b)$ を計算せよ.
$$\cos^2 a = 1 - \sin^2 a = 1 - \left(\frac{5}{6}\right)^2 = 1 - \frac{25}{36} = \frac{11}{36} \; ,$$

$$\frac{5\pi}{2} \le a \le \frac{7\pi}{2} \;$$
 より $\cos a \le 0 \;$ なので,
$$\cos a = -\sqrt{\frac{11}{36}} = -\frac{\sqrt{11}}{6} \; .$$

 $\sin b =$

$$\sin^2 b$$

 $\sin^2 b =$

$$\sin^2 b =$$

$$2\pi \le b \le 3\pi$$
 より $\sin b$

$$2\pi \le b \le 3\pi$$
 より $\sin b$ 0 なので,

$$\pi \le b \le 3\pi$$
 & $\sin b$ 0

$$a\pi \leq b \leq 3\pi$$
 & 9 $\sin b$ 0

$$2n \leq 0 \leq 3n$$
 & 9 sin 0

閏11.9.1 実数
$$a$$
 について $\frac{5\pi}{2} \leq a \leq \frac{7\pi}{2}$, $\sin a = \frac{5}{6}$ とする. 実数 b について $2\pi \leq b \leq 3\pi$, $\cos b = -\frac{2}{3}$ とする. $\sin(a+b)$ 及び $\cos(a+b)$ を計算せよ.
$$\cos^2 a = 1 - \sin^2 a = 1 - \left(\frac{5}{6}\right)^2 = 1 - \frac{25}{36} = \frac{11}{36} \ ,$$

$$\frac{5\pi}{2} \leq a \leq \frac{7\pi}{2} \ \text{より} \ \cos a \leq 0 \ \text{なので},$$

$$\cos a = -\sqrt{\frac{11}{36}} = -\frac{\sqrt{11}}{6} \ .$$
 また,
$$\sin^2 b = 1 - \cos^2 b = 1 - \left(-\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9} \ ,$$
 $2\pi \leq b \leq 3\pi$ より $\sin b \geq 0$ なので,

 $\sin b = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}$.

$$\sin(a+b) = \sin a \cos b + \cos a \sin b = \frac{5}{6} \cdot \left(-\frac{2}{3}\right) + \left(-\frac{\sqrt{11}}{6}\right) \cdot \frac{\sqrt{5}}{3}$$

$$=-rac{10+\sqrt{55}}{18}$$
 .
余弦関数の加法定理より,

正弦関数の加法定理より,

勇数の加法定理より,
$$\cos(a+b)=\cos a\cos b-\sin a\sin b=$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b =$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b = -\frac{\sqrt{11}}{6} \cdot \left(-\frac{2}{3}\right) - \frac{5}{6} \cdot \frac{\sqrt{5}}{3}$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b =$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b =$$

$$= \frac{2\sqrt{11} - 5\sqrt{5}}{18}.$$

 $\sin a = \frac{5}{6}$, $\cos a = -\frac{\sqrt{11}}{6}$, $\sin b = \frac{\sqrt{5}}{2}$, $\cos b = -\frac{2}{3}$.

$$ab = -\frac{\sqrt{11}}{6} \cdot \left(-\frac{2}{3}\right)$$

$$=-\frac{\sqrt{11}}{6}\cdot\left(-\frac{2}{3}\right)$$

例 実数
$$a$$
 について $an a=3$ とし、実数 b について $an b=7$ とする. $an(a+b)$ 及び $an(a-b)$ を計算する. 正接関数の加法定理を用いる.
$$an(a+b)=$$

$$an(a-b)=$$

例 実数
$$a$$
 について $\tan a = 3$ とし、実数 b について $\tan b = 7$ とする. $\tan(a+b)$ 及び $\tan(a-b)$ を計算する. 正接関数の加法定理を用いる.
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} = \frac{3+7}{1-3\cdot7} = \frac{10}{-20} = -\frac{1}{2} \ .$$

$$\tan(a+b) = \frac{1}{1 - \tan a \tan b} = \frac{1}{1 - 3 \cdot 7} = \frac{-20}{-20} = -\frac{2}{2}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 - 3 \cdot 7} = \frac{-4}{1 - 20} = -\frac{2}{2}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} = \frac{3-7}{1+3\cdot7} = \frac{-4}{22} = -\frac{2}{11} .$$

$$\tan(a-b) = \frac{1}{1+\tan a \tan b} = \frac{1}{1+3\cdot 7} = \frac{1}{22} = \frac{1}{11}$$

終

閏
$$11.9.2$$
 実数 x について $an x = \frac{2}{7}$ とし、実数 y について $an y = 3$ とする. $an(x+y)$ 及び $an(x-y)$ を計算せよ. 正接関数の加法定理を用いる. $an(x+y) =$

 $\tan(x-y) =$

問
$$11.9.2$$
 実数 x について $\tan x = \frac{2}{7}$ とし、実数 y について $\tan y = 3$ とする. $\tan(x+y)$ 及び $\tan(x-y)$ を計算せよ. 正接関数の加法定理を用いる.

 $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\frac{2}{7} + 3}{1 - \frac{2}{5} \cdot 3} = 23.$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$an(x-y) =$$

$$\tan(x-y) =$$

$$f(w-y) =$$

閏11.9.2 実数
$$x$$
 について $\tan x=\frac{2}{7}$ とし、実数 y について $\tan y=3$ とする. $\tan(x+y)$ 及び $\tan(x-y)$ を計算せよ. 正接関数の加法定理を用いる.
$$\tan(x+y)=\frac{\tan x+\tan y}{1-\tan x\tan y}=\frac{\frac{2}{7}+3}{1-\frac{2}{7}\cdot 3}=23 \ .$$

$$1 - \tan x \tan y \qquad 1 - \frac{2}{7} \cdot 3$$

$$\tan x - \tan y \qquad \frac{2}{7} - 3$$

$$\tan x - \tan y$$
 $\frac{2}{7} - 3$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} = \frac{\frac{2}{7} - 3}{1 + \frac{2}{7} \cdot 3} = -\frac{19}{13} .$$

$$\tan x - \tan y$$
 $\frac{2}{7} - 3$ 19

定理 (正弦関数・余弦関数の加法定理) 任意の実数 a と b とについて. $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ (複号同順), $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ (複号同順).

定理(正接関数の加法定理) 実数 a と b とについて, $\tan a$, $\tan b$, 及び tan(a+b) あるいは tan(a-b) の値が存在するとき.

 $\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$ (複号同順).

三角関数の加法定理から幾つかの公式を導く.

実数
$$a,b$$
 について,正弦関数の加法定理の等式
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

において b=a とすると.

 $\sin(a+a) = \sin a \cos a + \cos a \sin a ,$ $\sin 2a = 2\sin a\cos a$.

実数 a,b について、余弦関数の加法定理の等式 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

$$\cos(a+b) = \cos a \cos b - \sin a \sin a$$

において b=a とすると.

$$i$$
 とすると,

 $\cos(a+a) = \cos a \cos a - \sin a \sin a ,$ $\cos 2a = \cos^2 a - \sin^2 a .$

実数
$$a,b$$
 について、余弦関数の加法定理の等式 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

において
$$b=a$$
 とすると、 $\cos(a+a)=\cos a\cos a-\sin a\sin a$ 、

$$\cos 2a = \cos^2 a - \sin^2 a \ .$$

$$\cos 2a = \cos a - \sin a .$$

$$a + \cos^2 a = 1 \quad \text{If } \sin^2 a = 1 - \cos^2 a \quad \text{If } \Omega \text{ T}$$

$$+\cos^2 a=1$$
 より $\sin^2 a=1-\cos^2 a$ なので、

$$\sin^2 a + \cos^2 a = 1$$
 より $\sin^2 a = 1 - \cos^2 a$ なので、

$$a+\cos^2 a=1$$
 より $\sin^2 a=1-\cos^2 a$ なので、

$$a + \cos^2 a = 1$$
 & $\sin^2 a = 1 - \cos^2 a$ & $\cos^2 a - \sin^2 a = \cos^2 a - (1 - \cos^2 a) = 2\cos^2 a - 1$,

実数
$$a,b$$
 について、余弦関数の加法定理の等式 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

において
$$b=a$$
 とすると、
$$\cos(a+a) = \cos a \cos a - \sin a \sin a$$
、

$$\cos 2a = \cos^2 a - \sin^2 a \ .$$

$$\sin^2 a + \cos^2 a = 1$$
 より $\sin^2 a = 1 - \cos^2 a$ なので、

$$\cos^2 a - \sin^2 a = \cos^2 a - (1 - \cos^2 a) = 2\cos^2 a - 1 ,$$

$$\cos^2 a - \sin^2 a = \cos^2 a - (1 - \cos^2 a) = 2\cos^2 a - 1 ,$$

$$\cos^2 a - 1 + \log^2 a - 1 - \sin^2 a + \cos^2 a = 1$$

$$\sin^2 a + \cos^2 a = 1$$
 より $\cos^2 a = 1 - \sin^2 a$ なので,
$$\cos^2 a - \sin^2 a = 1 - \sin^2 a - \sin^2 a = 1 - 2\sin^2 a$$
 ,

$$\cos^2 a - \sin^2 a = 1 - \sin^2 a - \sin^2 a = 1 - 2\sin^2 a ,$$

実数 a,b について、余弦関数の加法定理の等式 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

において
$$b=a$$
 とすると.

$$\cos(a+a) = \cos a \cos a - \sin a \sin a ,$$
$$\cos 2a = \cos^2 a - \sin^2 a$$

$$\sin^2 a + \cos^2 a = 1$$
 より $\sin^2 a = 1 - \cos^2 a$ なので,
$$\cos^2 a - \sin^2 a = \cos^2 a - (1 - \cos^2 a) = 2\cos^2 a - 1$$
,

$$\sin^2 a + \cos^2 a = 1$$
 より $\cos^2 a = 1 - \sin^2 a$ なので、
$$\cos^2 a - \sin^2 a = 1 - \sin^2 a - \sin^2 a = 1 - 2\sin^2 a ,$$

 $\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$

$$\cos^2 a - \sin^2 a = 1 - \sin^2 a - \sin^2 a = 1 - 2\sin^2 a$$

故に

実数
$$a,b$$
 について、正接関数の加法定理の等式 $an(a+b) = rac{ an a + an b}{1 - an a an b}$

 $\tan 2a = \frac{2\tan a}{1 - \tan^2 a} \ .$

において
$$b=a$$
 とすると

 $\tan(a+a) = \frac{\tan a + \tan a}{1 - \tan a \tan a} ,$

$$\sin 2a = 2\sin a \cos a ,$$

$$\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a ,$$

a が $\frac{\pi}{2}$ の奇数倍でも $\frac{\pi}{4}$ の奇数倍でもないとき $an 2a = rac{2 an a}{1- an^2 a}$.

任意の実数 a について, $\cos 2a = 2\cos^2 a - 1 = 1 - 2\sin^2 a .$

任意の実数
$$a$$
 について,

 $2\sin^2 a = 1 - \cos 2a ,$ $\sin^2 a = \frac{1 - \cos 2a}{2} \ .$

任意の実数
$$a$$
 について,
$$\cos 2a = 2\cos^2 a - 1 = 1 - 2\sin^2 a .$$

$$\cos 2a = 1 - 2\sin^2 a \quad \sharp \quad \mathcal{Y},$$

 $\cos 2a = 2\cos^2 a - 1$ & \emptyset .

 $2\sin^2 a = 1 - \cos 2a ,$ $\sin^2 a = \frac{1 - \cos 2a}{2} .$

 $2\cos^2 a = 1 + \cos 2a .$ $\cos^2 a = \frac{1 + \cos 2a}{2} .$

任意の実数
$$a$$
 について,

$$\cos 2a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$
 .
$$\cos 2a = 1 - 2\sin^2 a \quad \& 9.$$

 $2\sin^2 a = 1 - \cos 2a ,$

$$\sin^2 a = \frac{1 - \cos 2a}{2} \ .$$

 $\cos 2a = 2\cos^2 a - 1$ & \emptyset .

$$\cos^2 a = -$$
[定理 11.9.2] 任意の実数 a について、

$$\cos^2 a$$

$$2\cos^2 a = 1 + \cos 2a$$
,

$$\cos^2 a = \frac{1 + \cos 2a}{2} \ .$$

 $\sin^2 a = \frac{1 - \cos 2a}{2}$, $\cos^2 a = \frac{1 + \cos 2a}{2}$.

$$\cos^2 a = \frac{1 + \cos 2a}{2} \ .$$

$$2\cos^2 a = 1 + \cos 2a ,$$

$$\cos^2 a = 1 + \cos 2a$$

$$\cos^2 a = \frac{1 + \cos 2a}{2} \ .$$

実数
$$a,b$$
 について、余弦関数の加法定理の等式

$$\cos(a+b) = \cos a \cos b - \sin a \sin b , \quad \cos(a-b) = \cos a \cos b + \sin a \sin b$$

について左辺どうし右辺どうし足し算する.
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$cos(a+b) = cos a cos b - sin a sin b$$

$$+ cos(a-b) = cos a cos b + sin a sin b$$

 $\cos(a+b) + \cos(a-b) =$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$+ \cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$+ \cos(a-b) = \cos a \cos b + \sin a \sin b$$

実数
$$a,b$$
 について、余弦関数の加法定理の等式
$$\cos(a+b) = \cos a \cos b - \sin a \sin b \ , \quad \cos(a-b) = \cos a \cos b + \sin a \sin b$$

について左辺どうし右辺どうし足し算する.

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$+ \cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\cos(a+b) + \cos(a-b) = 2\cos a \cos b$$

よって

 $\cos a \cos b = \frac{1}{2} \{\cos(a+b) + \cos(a-b)\}\ .$

実数
$$a,b$$
 について、余弦関数の加法定理の等式

$$\cos(a+b) = \cos a \cos b - \sin a \sin b , \quad \cos(a-b) = \cos a \cos b + \sin a \sin b$$

について左辺どうし右辺どうし引き算する.
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$- \cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\frac{-\cos(a-b) = \cos a \cos b + \sin a \sin b}{\cos(a+b) - \cos(a-b) =}$$

実数
$$a,b$$
 について、余弦関数の加法定理の等式
$$\cos(a+b)=\cos a\cos b-\sin a\sin b \ , \ \cos(a-b)=\cos a\cos b+\sin a\sin b$$

について左辺どうし右辺どうし引き算する.
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\frac{-\cos(a-b) = \cos a \cos b + \sin a \sin b}{\cos(a+b) - \cos(a-b) = -2\sin a \sin b}$$

$$\cos(a+b) - \cos(a-b) = -2\sin a \sin b$$
よって

って
$$\sin a \sin b = -rac{1}{2}\{\cos(a+b)-\cos(a-b)\}$$
 .

$$\cos(a+b) \cos(a-b) = 2\sin a \sin b$$

実数
$$a,b$$
 について、正弦関数の加法定理の等式 $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $\sin(a-b) = \sin a \cos b - \cos a \sin b$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$
 , $\sin(a-b) = \sin a \cos b - \cos a \sin b$ について左辺どうし右辺どうし足し算する.

ついて左辺どうし右辺どうし足し算する.
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$+ \sin(a-b) = \sin a \cos b - \cos a \sin b$$

 $\sin(a+b) + \sin(a-b) =$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$+ \sin(a-b) = \sin a \cos b - \cos a \sin b$$

実数
$$a,b$$
 について、正弦関数の加法定理の等式 $\sin(a+b) = \sin a \cos b + \cos a \sin b$, $\sin(a-b) = \sin a \cos b - \cos a \sin b$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$+ \sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\sin(a+b) + \sin(a-b) = 2\sin a \cos b$$

よって

 $\sin a \cos b = \frac{1}{2} \{ \sin(a+b) + \sin(a-b) \} .$

[定理 11.9.3] 任意の実数
$$a$$
 と b とについて,
$$\sin a \sin b = -\frac{1}{2} \{\cos(a+b) - \cos(a-b)\} \ ,$$

$$\cos a \cos b = \frac{1}{2} \{\cos(a+b) + \cos(a-b)\}$$
.

- $\sin a \cos b = \frac{1}{2} \{ \sin(a+b) + \sin(a-b) \}$,

 $oxed{\mathbb{M}}$ 変数 x の式 $\cos(3x+2)\cos(5x-7)$ を x の 1 次式の正弦・余弦の和か差の

定数倍の形に変形する.

例 変数
$$x$$
 の式 $\cos(3x+2)\cos(5x-7)$ を x の 1 次式の正弦・余弦の和か差の定数倍の形に変形する。
$$\cos(3x+2)\cos(5x-7)=\frac{1}{2}[\cos\{(3x+2)+(5x-7)\}+\cos\{(3x+2)-(5x-7)\}]$$

$$\cos a\cos b=\frac{1}{2}\{\cos(a+b)+\cos(a-b)\}$$

例 変数
$$x$$
 の式 $\cos(3x+2)\cos(5x-7)$ を x の 1 次式の正弦・余弦の和か差の定数倍の形に変形する.
$$\cos(3x+2)\cos(5x-7)=\frac{1}{2}[\cos\{(3x+2)+(5x-7)\}+\cos\{(3x+2)-(5x-7)\}]$$

 $=\frac{1}{2}\{\cos(8x-5)+\cos(-2x+9)\}$.

定数倍の形に変形する.
$$\cos(3x+2)\cos(5x-7)=\frac{1}{2}[\cos\{(3x+2)+(5x-7)\}+\cos\{(3x+2)-(5x-7)\}]\\ =\frac{1}{2}\{\cos(8x-5)+\cos(-2x+9)\}\ ,$$
 ここで $\cos(-2x+9)=\cos\{-(2x-9)\}=\cos(2x-9)$ なので,

 $\cos(3x+2)\cos(5x-7) = \frac{1}{2}\{\cos(8x-5) + \cos(2x-9)\}.$

終

 $| \overline{M} |$ 変数 x の式 $\cos(3x+2)\cos(5x-7)$ を x の 1 次式の正弦・余弦の和か差の

問11.9.3 変数 x の式 $\sin(2x+1)\cos(5x+7)$ を x の1 次式の正弦・余弦の和

か差の定数倍の形に変形せよ.

問
$$11.9.3$$
 変数 x の式 $\sin(2x+1)\cos(5x+7)$ を x の 1 次式の正弦・余弦の和か差の定数倍の形に変形せよ。
$$\sin(2x+1)\cos(5x+7) = \frac{1}{2}\{\sin(7x+8) + \sin(-3x-6)\}$$

$$= \frac{1}{2}[\sin(7x+8) + \sin\{-(3x+6)\}]$$

$$= \frac{1}{2}[\sin(7x+8) + \sin\{-(3x+6)\}]$$

$$= \frac{1}{2} \{ \sin(7x+8) - \sin(3x+6) \} .$$

$$= \frac{1}{2} \{ \sin(7x+8) - \sin(3x+6) \} .$$

$$= \frac{1}{2} \{ \sin(7x+8) - \sin(3x+6) \} .$$

$$=2\left(\sin(ix+0)-\sin(ix+0)\right)$$
.

終

問11.9.4 変数 x の式 $\sin(3x-5)\sin(6x-1)$ を x の1 次式の正弦・余弦の和

か差の定数倍の形に変形せよ.

問
$$11.9.4$$
 変数 x の式 $\sin(3x-5)\sin(6x-1)$ を x の 1 次式の正弦・余弦の和か差の定数倍の形に変形せよ。
$$\sin(3x-5)\sin(6x-1) = -\frac{1}{2}\{\cos(9x-6) - \cos(-3x-4)\}$$
$$= -\frac{1}{2}[\cos(9x-6) - \cos\{-(3x+4)\}]$$

$$= -\frac{1}{2}[\cos(9x-6) - \cos\{-(3x+4)\}]$$

$$= -\frac{1}{2}[\cos(9x-6) - \cos\{-(3x+4)\}]$$

$$= \frac{1}{2}\{\cos(3x+4) - \cos(9x-6)\}$$

$$= \frac{1}{2} \{ \cos(3x+4) - \cos(9x-6) \} .$$

終

$$= \frac{1}{2} \{ \cos(3x+4) - \cos(9x-6) \} .$$

$$= \frac{1}{2} \{\cos(3x+4) - \cos(9x-6)\}.$$

実数
$$a,b$$
 について,
$$\frac{a+b}{2}+\frac{a-b}{2}=\frac{a+b+a-b}{2}=a\ ,\quad \frac{a+b}{2}-\frac{a-b}{2}=\frac{a+b-(a-b)}{2}=b\ ;$$
 oまり,
$$a=\frac{a+b}{2}+\frac{a-b}{2}\ ,\quad b=\frac{a+b}{2}-\frac{a-b}{2}\ .$$

つまり.

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

正弦関数の加法定理より.

$$\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$(a+b) \quad a-b \quad a+b \quad a-b \quad a+b \quad a-b$$

$$\sin a$$

$$\sin a = \sin b = \sin b$$

$$\sin b = \sin b$$

$$\sin b = \sin\left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} - \cos\frac{a+b}{2}\sin\frac{a-b}{2}$$
.

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

$$\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$\sin b = \sin \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2} .$$
 これらの等式の左辺どうし右辺どうし足し算する.

 $\sin a = \sin \frac{a+b}{2} \cos \frac{a-b}{2} + \cos \frac{a+b}{2} \sin \frac{a-b}{2}$

$$+ \sin b = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}$$

実数 a,b について.

正弦関数の加法定理より.

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

正弦関数の加法定理より、 $(a+b-a-b) \qquad a+b-a-b \qquad a+b$

$$\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$\sin b = \sin\left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} - \cos\frac{a+b}{2}\sin\frac{a-b}{2} .$$

これらの等式の左辺どうし右辺どうし足し算する. $\sin a = \sin \frac{a+b}{2} \cos \frac{a-b}{2} + \cos \frac{a+b}{2} \sin \frac{a-b}{2}$

$$+ \sin b = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}$$

$$\sin a + \sin b = 2\sin \frac{a+b}{2} \cos \frac{a-b}{2}$$

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

正弦関数の加法定理より.

$$\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$(a+b) \quad a-b \quad a+b \quad a-b \quad a+b \quad a-b$$

$$\sin a$$

$$\sin a = \sin b = \sin b$$

$$\sin b = \sin b$$

$$\sin b = \sin\left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} - \cos\frac{a+b}{2}\sin\frac{a-b}{2}$$
.

実数
$$a,b$$
 について,
$$a=\frac{a+b}{2}+\frac{a-b}{2}\;,\qquad b=\frac{a+b}{2}-\frac{a-b}{2}\;.$$

 $\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$

正弦関数の加法定理より.

 $\sin a - \sin b =$

$$\sin b = \sin \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}.$$
これらの等式の左辺どうし右辺どうし引き算する.

 $\sin a = \sin \frac{a+b}{2} \cos \frac{a-b}{2} + \cos \frac{a+b}{2} \sin \frac{a-b}{2}$ $-\sin b = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}$

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

正弦関数の加法定理より.

実数 a,b について.

 $\sin a = \sin \frac{a+b}{2} \cos \frac{a-b}{2} + \cos \frac{a+b}{2} \sin \frac{a-b}{2}$

 $\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$

 $-\sin b = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2}$

これらの等式の左辺どうし右辺どうし引き算する.

 $\sin b = \sin \left(\frac{a+b}{2} - \frac{a-b}{2} \right) = \sin \frac{a+b}{2} \cos \frac{a-b}{2} - \cos \frac{a+b}{2} \sin \frac{a-b}{2} .$

 $\sin a = \sin\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \sin\frac{a+b}{2}\cos\frac{a-b}{2} + \cos\frac{a+b}{2}\sin\frac{a-b}{2} ,$

余弦関数の加法定理より. $\cos a = \cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} - \sin\frac{a+b}{2}\sin\frac{a-b}{2} ,$

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

$$\cos b = \cos \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2} .$$

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

これらの等式の左辺どうし右辺どうし足し算する.

余弦関数の加法定理より、 $\cos a = \cos \left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos \frac{a+b}{2} \cos \frac{a-b}{2} - \sin \frac{a+b}{2} \sin \frac{a-b}{2} ,$

$$\cos b = \cos \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2} .$$

$$\cos a = \cos \frac{a+b}{2} \cos \frac{a-b}{2} - \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$

$$+ \cos b = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$

$$\cos a + \cos b =$$

実数 a,b について.

余弦関数の加法定理より、
$$(a+b)$$

$$\cos a = \cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} - \sin\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$\cos b = \cos\left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} + \sin\frac{a+b}{2}\sin\frac{a-b}{2} .$$

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

これらの等式の左辺どうし右辺どうし足し算する.

 $\cos a = \cos \frac{a+b}{2} \cos \frac{a-b}{2} - \sin \frac{a+b}{2} \sin \frac{a-b}{2}$ $+ \cos b = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2}$ $\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$

余弦関数の加法定理より. $\cos a = \cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} - \sin\frac{a+b}{2}\sin\frac{a-b}{2} ,$

 $a = \frac{a+b}{2} + \frac{a-b}{2}$, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

$$\cos b = \cos \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2} .$$

$$a = \frac{a+b}{2} + \frac{a-b}{2}$$
, $b = \frac{a+b}{2} - \frac{a-b}{2}$.

これらの等式の左辺どうし右辺どうし引き算する.

実数 a,b について.

余弦関数の加法定理より、
$$\cos a = \cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} - \sin\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$\cos b = \cos \left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2}.$$

$$\cos a = \cos \frac{a+b}{2} \cos \frac{a-b}{2} - \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$

$$- \cos b = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$

 $\cos a - \cos b =$

$$\cos a - \cos b =$$

実数 *a,b* について,

$$a=rac{a+b}{2}+rac{a-b}{2}\;, \qquad b=rac{a+b}{2}-rac{a-b}{2}\;.$$
余弦関数の加法定理より,

$$\cos a = \cos\left(\frac{a+b}{2} + \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} - \sin\frac{a+b}{2}\sin\frac{a-b}{2} ,$$

$$\cos b = \cos\left(\frac{a+b}{2} - \frac{a-b}{2}\right) = \cos\frac{a+b}{2}\cos\frac{a-b}{2} + \sin\frac{a+b}{2}\sin\frac{a-b}{2} .$$

これらの等式の左辺どうし右辺どうし引き算する. $\cos a = \cos \frac{a+b}{2} \cos \frac{a-b}{2} - \sin \frac{a+b}{2} \sin \frac{a-b}{2}$

$$\cos a = \cos \frac{a}{2} \cos \frac{a}{2} - \sin \frac{a}{2} \sin \frac{a}{2}$$
$$- \cos b = \cos \frac{a+b}{2} \cos \frac{a-b}{2} + \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$
$$\cos a - \cos b = -2 \sin \frac{a+b}{2} \sin \frac{a-b}{2}$$

[定理 11.9.4] 任意の実数
$$a$$
 と b とについて,
$$\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2} \ ,$$

$$\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2} \ ,$$

$$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2} ,$$

$$\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2} .$$

例 変数 x の式 $\sin(2x-5)-\sin(7x+4)$ を x の 1 次式の正弦・余弦の積の定数倍の形に変形する.

例 変数
$$x$$
 の式 $\sin(2x-5)-\sin(7x+4)$ を x の 1 次式の正弦・余弦の積の定数倍の形に変形する.
$$\sin(2x-5)-\sin(7x+4)=2\cos\frac{2x-5+7x+4}{2}\sin\frac{2x-5-(7x+4)}{2}$$

5111(2.2	0)	$\sin(7x+4)=2\cos$	2	5111	2
		$\sin a - \sin b = 2\cos\frac{a - b}{2}$	$\frac{a-b}{2}\sin\frac{a-b}{2}$	<u>b</u>	

例 変数
$$x$$
 の式 $\sin(2x-5)-\sin(7x+4)$ を x の 1 次式の正弦・余弦の積の定数倍の形に変形する.
$$\sin(2x-5)-\sin(7x+4)=2\cos\frac{2x-5+7x+4}{2}\sin\frac{2x-5-(7x+4)}{2}$$

$$=2\cos\frac{9x-1}{2}\sin\frac{-5x-9}{2} \ .$$

例 変数
$$x$$
 の式 $\sin(2x-5)-\sin(7x+4)$ を x の 1 次式の正弦・余弦の積の定数倍の形に変形する.
$$\sin(2x-5)-\sin(7x+4)=2\cos\frac{2x-5+7x+4}{2}\sin\frac{2x-5-(7x+4)}{2}$$

$$=2\cos\frac{9x-1}{2}\sin\frac{-5x-9}{2} \ .$$
 ここで $\sin\frac{-5x-9}{2}=\sin\left(-\frac{5x+9}{2}\right)=-\sin\frac{5x+9}{2}$ なので、
$$\sin(2x-5)-\sin(7x+4)=-2\sin\frac{5x+9}{2}\cos\frac{9x-1}{2} \ .$$

5111	2		-2	$\int = -\sin \frac{\pi}{2}$
	$\sin(2x)$	$(c-5) - \sin c$	167x + 4	$4) = -2\sin\frac{5x+9}{\cos\frac{9x-1}{2}} \cdot \frac{1}{3}$

	4	\		4	
s	in(2x-5) -	$-\sin(7x -$	$+4) = -2\sin$	$\frac{5x+9}{2}\cos\frac{9}{2}$	$\frac{9x-1}{2}$.

$$\sin(2x-5) - \sin(7x+4) = -2\sin\frac{5x+9}{2}\cos\frac{9x-1}{2}$$

問11.9.5 変数 x の式 $\cos(2x+1)-\cos(5x+8)$ を x の1 次式の正弦・余弦の

積の定数倍の形に変形せよ.

問11.9.5 変数
$$x$$
 の式 $\cos(2x+1)-\cos(5x+8)$ を x の 1 次式の正弦・余弦の積の定数倍の形に変形せよ。
$$\cos(2x+1)-\cos(5x+8)=-2\sin\frac{7x+9}{2}\sin\frac{-3x-7}{2}$$

$$=-2\sin\frac{7x+9}{2}\sin\left(-\frac{3x+7}{2}\right)$$
 $7x+9$ $\left(-\frac{3x+7}{2}\right)$

$$= -2\sin\frac{7x+9}{2}\left(-\sin\frac{3x+7}{2}\right)$$

$=-2\sin\frac{\pi}{2}\left(-\sin\frac{\pi}{2}\right)$
$=2\sin\frac{3x+7}{\sin\frac{7x+9}{\sin\frac{7x+9}{\cos\frac{7x+9}$

$=-2\sin{2}\left(-\sin{2}\right)$	
$=2\sin\frac{3x+7}{2}\sin\frac{7x+9}{2}$.	

$$= 2 \sin \frac{3x + 7}{2} \sin \frac{7x + 9}{2} .$$

終

$$= -2\sin\frac{7x+9}{2}\left(-\sin\frac{3x+7}{2}\right)$$

例 変数 x の式 $\cos x + \cos \left(x + \frac{\pi}{3} \right)$ を計算して正弦または余弦のどちらか一方だけが現れる式にする.

例 変数
$$x$$
 の式 $\cos x + \cos \left(x + \frac{\pi}{3}\right)$ を計算して正弦または余弦のどちらか一方だけが現れる式にする.

$\cos x + \cos\left(x + \frac{\pi}{3}\right) = 2\cos\frac{x + x + \frac{\pi}{3}}{2}\cos^{\frac{\pi}{3}}$	x - (x +
$\cos x + \cos \left(x + \frac{\pi}{3}\right) = 2\cos \frac{\pi}{2}$	2
a+b $a-b$	

$\cos a + \cos a$	$\cos b = 2\cos$	$\frac{a+b}{2}$ co	$s \frac{a-b}{2}$
		-	_

例 変数
$$x$$
 の式 $\cos x + \cos \left(x + \frac{\pi}{3} \right)$ を計算して正弦または余弦のどちらか一方だけが現れる式にする. $x + x + \frac{\pi}{3}$ $x = \left(x + \frac{\pi}{3} \right)$

$$\cos x + \cos\left(x + \frac{\pi}{3}\right) = 2\cos\frac{x + x + \frac{\pi}{3}}{2}\cos\frac{x - \left(x + \frac{\pi}{3}\right)}{2}$$

だけが現れる式にする.

$$= 2\cos\frac{2x + \frac{\pi}{3}}{2}\cos\frac{-\frac{\pi}{3}}{2}$$
$$= 2\cos\left(x + \frac{\pi}{6}\right)\cos\frac{\pi}{6}$$

例 変数
$$x$$
 の式 $\cos x + \cos\left(x + \frac{\pi}{3}\right)$ を計算して正弦または余弦のどちらか一方だけが現れる式にする.
$$\cos x + \cos\left(x + \frac{\pi}{3}\right) = 2\cos\frac{x + x + \frac{\pi}{3}}{2}\cos\frac{x - \left(x + \frac{\pi}{3}\right)}{2}$$

$$= 2\cos\frac{2x + \frac{\pi}{3}}{2}\cos\frac{-\frac{\pi}{3}}{2}$$
$$= 2\cos\left(x + \frac{\pi}{6}\right)\cos\frac{\pi}{6}$$

$=2\cos\left(x+\frac{\pi}{6}\right)\cos\frac{\pi}{6}$
$=2\cos\left(x+\frac{\pi}{2}\right)\cdot\frac{\sqrt{3}}{2}$

$$=2\cos\left(x+\frac{\pi}{6}\right)\cdot\frac{\sqrt{3}}{2}$$

$$= 2\cos\left(x + \frac{\pi}{6}\right) \cdot \frac{\pi}{2}$$
$$= \sqrt{3}\cos\left(x + \frac{\pi}{2}\right).$$

$$=\sqrt{3}\cos\left(x+\frac{\pi}{6}\right) .$$

問11.9.6 変数 x の式 $\sin x + \sin \left(x + \frac{\pi}{3}\right)$ を計算して正弦または余弦のどちらか一方だけが現れる式にしなさい.

か一方だけが現れる式にしなさい。
$$\sin x + \sin\left(x + \frac{\pi}{3}\right) = 2\sin\frac{x + x + \frac{\pi}{3}}{2}\cos\frac{x - \left(x + \frac{\pi}{3}\right)}{2}$$

$$= 2\sin\frac{2x + \frac{\pi}{3}}{2}\cos\frac{-\frac{\pi}{3}}{2}$$

 $\boxed{\mathbb{B}11.9.6}$ 変数 x の式 $\sin x + \sin \left(x + \frac{\pi}{3}\right)$ を計算して正弦または余弦のどちら

$$2 2 2$$

$$= 2\sin\left(x + \frac{\pi}{6}\right)\cos\frac{\pi}{6}$$

$$= 2\sin\left(x + \frac{\pi}{6}\right)\cos\frac{\pi}{6}$$

$$=2\sin\left(x+\frac{\pi}{6}\right)\cdot\frac{\sqrt{3}}{2}$$

$$= 2\sin\left(x + \frac{\pi}{6}\right) \cdot \frac{\sqrt{3}}{2}$$

$$= 2\sin\left(x + \frac{\pi}{6}\right) \cdot \frac{\pi}{2}$$

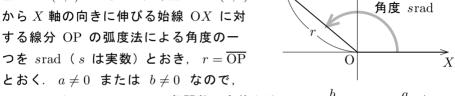
$$= \sqrt{3}\sin\left(x + \frac{\pi}{4}\right)$$

$$=\sqrt{3}\sin\left(x+\frac{\pi}{6}\right)$$
.

$$=\sqrt{3}\sin\left(x+\frac{\pi}{6}\right)$$
.

は $b \neq 0$ とする. XY 座標平面における P = (a, b)点 P = (a,b) に対して、原点 O = (0,0)角度 srad

定数 a と b とについて $a \neq 0$ また



つを srad (s は実数) とおき、 $r = \overline{OP}$ $b \neq 0$ $a \neq 0$ $b \neq 0$ $b \neq 0$ $b \neq 0$

 $\mathrm{P} \neq \mathrm{O}$, よって r > 0 . 三角関数の定義より $\sin s = \frac{b}{\pi}$, $\cos s = \frac{a}{\pi}$ なので,

 $a = r \cos s$, $b = r \sin s$.

は $b \neq 0$ とする. XY 座標平面における 点 P = (a,b) に対して、原点 O = (0,0)から X 軸の向きに伸びる始線 OX に対 する線分 OP の弧度法による角度の一

とおく、
$$a\neq 0$$
 または $b\neq 0$ なので、 $P\neq 0$ 、よって $r>0$. 三角関数の定義より $\sin s=\frac{b}{r}$ 、 $\cos s=\frac{a}{r}$ なので、 $a=r\cos s$ 、 $b=r\sin s$.

よって,各実数 x に対して,

定数 a と b とについて $a \neq 0$ また

つを srad (s は実数) とおき、 $r = \overline{OP}$

 $a\sin x + b\cos x = r\cos s\sin x + r\sin s\cos x = r(\sin x\cos s + \cos x\sin s).$

各実数
$$x$$
 に対して,

	(

$$a\sin x + b\cos x = r\cos s\sin x + r\sin s\cos x = r(\sin x\cos s + \cos x\sin s).$$

各実数
$$x$$
 に対して,
 $a\sin x + b\cos x = r\cos s\sin x + r\sin s\cos x = r(\sin x\cos s + \cos x\sin s)$.

 $a\sin x + b\cos x = r\sin(x+s)$.

正弦関数の加法定理より
$$\sin x \cos s + \cos x \sin s = \sin(x+s)$$
 なので,

各実数 x に対して. $a\sin x + b\cos x = r\cos s\sin x + r\sin s\cos x = r(\sin x\cos s + \cos x\sin s)$.

正弦関数の加法定理より $\sin x \cos s + \cos x \sin s = \sin(x+s)$ なので、

$$a\sin x + b\cos x = r\sin(x+s) .$$

O = (0,0), P = (a,b) より $r = \overline{OP} = \sqrt{a^2 + b^2}$ なので、

 $a\sin x + b\cos x = r\sin(x+s) = \sqrt{a^2 + b^2\sin(x+s)}.$

 $a\sin x + b\cos x = r\cos s\sin x + r\sin s\cos x = r(\sin x\cos s + \cos x\sin s)$.

正弦関数の加法定理より $\sin x \cos s + \cos x \sin s = \sin(x+s)$ なので、

各実数 x に対して.

$$a\sin x+b\cos x=r\sin(x+s)$$
 . $O=(0,0)$, $P=(a,b)$ より $r=\overline{\mathrm{OP}}=\sqrt{a^2+b^2}$ なので、

 $a\sin x + b\cos x = r\sin(x+s) = \sqrt{a^2 + b^2}\sin(x+s) .$ 定理 定数 a と b とについて, $a \neq 0$ または $b \neq 0$ とする. XY 座標平面

における点 P=(a,b) に対して、原点 O=(0,0) から X 軸の向きに伸びる

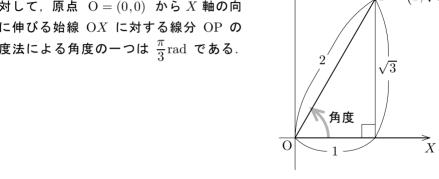
始線 OX に対する線分 OP の弧度法による角度の一つを srad (s は実数)

とする、このとき、任意の実数 x について

 $a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x+s)$.

 $| \overline{\mathbb{M}} |$ 次のような定数 r,s の値を一組求める : 任意の実数 x について

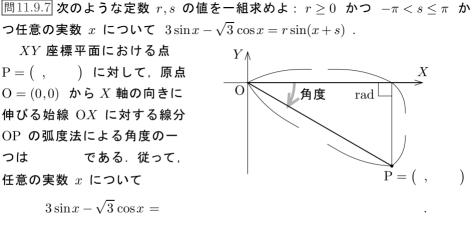
 $\sin x + \sqrt{3}\cos x = r\sin(x+s) .$



 $oxed{\mathbb{M}}$ 次のような定数 r,s の値を一組求める: 任意の実数 x について $\sin x + \sqrt{3}\cos x = r\sin(x+s) .$ XY 座標平面における点 $P=(1,\sqrt{3})$ に対して、原点 O = (0,0) から X 軸の向 きに伸びる始線 OX に対する線分 OP の 弧度法による角度の一つは $\frac{\pi}{3}$ rad である. よって、任意の実数 x について $\sin x + \sqrt{3}\cos x =$ 角度 $\frac{\pi}{2}$ rad

 $| \overline{M} |$ 次のような定数 r,s の値を一組求める : 任意の実数 x について $\sin x + \sqrt{3}\cos x = r\sin(x+s) .$ XY 座標平面における点 $P=(1,\sqrt{3})$ Y_{Λ} に対して、原点 O=(0,0) から X 軸の向 きに伸びる始線 OX に対する線分 OP の 弧度法による角度の一つは $\frac{\pi}{3}$ rad である. よって、任意の実数 x について $\sin x + \sqrt{3}\cos x = \sqrt{1^2 + \sqrt{3}^2}\sin\left(x + \frac{\pi}{2}\right)$ 角度 $\frac{\pi}{2}$ rad $=2\sin\left(x+\frac{\pi}{3}\right)$.

 $oxed{\mathbb{M}}$ 次のような定数 r,s の値を一組求める: 任意の実数 x について $\sin x + \sqrt{3}\cos x = r\sin(x+s) .$ XY 座標平面における点 $P=(1,\sqrt{3})$ Y_{Λ} に対して、原点 O = (0,0) から X 軸の向 きに伸びる始線 OX に対する線分 OP の 弧度法による角度の一つは $\frac{\pi}{3}$ rad である. よって、任意の実数 x について $\sin x + \sqrt{3}\cos x = \sqrt{1^2 + \sqrt{3}^2}\sin\left(x + \frac{\pi}{2}\right)$ 角度 $\frac{\pi}{2}$ rad $=2\sin\left(x+\frac{\pi}{3}\right)$. r=2 かつ $s=\frac{\pi}{3}$ とすればよい.



つ任意の実数
$$x$$
 について $3\sin x - \sqrt{3}\cos x = r\sin(x+s)$. XY 座標平面における点 $P=(3,-\sqrt{3})$ に対して、原点 $O=(0,0)$ から X 軸の向きに 伸びる始線 OX に対する線分 OP の弧度法による角度の一つは $-\frac{\pi}{6}$ rad である。従って,任意の実数 x について $P=(3,-\sqrt{3})$

 $| \mathbb{B} | 11.9.7 |$ 次のような定数 r,s の値を一組求めよ: $r \geq 0$ かつ $-\pi < s \leq \pi$ か

は
$$-rac{\pi}{6}\mathrm{rad}$$
 である. 従って,
意の実数 x について

 $3\sin x - \sqrt{3}\cos x =$

