§ 0.7 対数関数

定数 a は実数で a>0 かつ $a\neq 1$ とする. 実数全体を定義域とする指数関数 a^x の値域は区間 $(0,\infty)$ である. y>0 である各実数 y に対して $y=a^x$ である 実数が唯一つある. 従って,定理 0.3.3 より,実数全体を定義域とする指数関数 a^x の逆関数がある. 指数関数 a^x の逆関数の定義域は,指数関数 a^x の値域である区間 $(0,\infty)$ である. a を底とする指数関数 a^x の逆関数を,a を底とする**対数関数** (logarismic function) といい,正の実数 x における値を $\log_a x$ と書き表す.

実数 a について a>0 , $a\neq 1$ とする. a を底とする対数関数の実数 r における値 $\log_a r$ を , a を底とする r の対数 (logarithm) といいます. また、対数を表す式 $\log_a X$ において、 \log_a の中身 X を真数という. 対数関数はの定義域は区間 $(0,\infty)$ (の一部) なので、

対数の真数は正の数でなければならない

ことに注意すること.

定数 a は実数で a>0 , $a\neq 1$ とする. a を底とする対数関数 $\log_a x$ は a を底とする指数関数を a^x の逆関数なので,定理0.3.1 より次の定理が成り立つ.

定理 0.7.1 実数 a について a > 0 , $a \ne 1$ とする.

任意の実数 p について $\log_a(a^p) = p$,

r>0 である任意の実数 r について $a^{\log_a r}=r$.

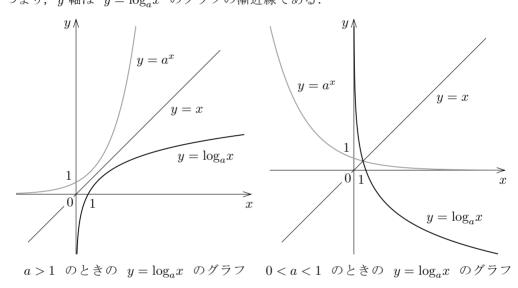
a は実数で a>0 , $a\neq 1$ とする. $1=a^0$ なので,定理 0.7.1 より,

$$\log_a 1 = \log_a(a^0) = 0.$$

 $a = a^1 \ \% \mathcal{O} \mathcal{T},$

$$\log_a a = \log_a(a^1) = 1 .$$

定数 a は実数で a>0 かつ $a\ne 1$ とする. a を底とする対数関数 $\log_a x$ は a を底とする指数関数 a^x の逆関数なので,定理0.3.2 より,xy 座標平面において, $y=\log_a x$ のグラフは $y=a^x$ のグラフと直線 y=x に関して対称である. 対数関数 $y=\log_a x$ のグラフは限りなく y 軸に近づいていくが,y 軸に接することはない. つまり,y 軸は $y=\log_a x$ のグラフの漸近線である.



定理0.7.2 定数 a は実数で a>0 かつ $a\neq 1$ とする. 対数関数 $\log_a x$ は, a>1 のとき単調増加であり, 0<a<1 のとき単調減少である.

更に、対数関数について以下の定理が成り立つ.

グラフから分かるように次の定理が成り立つ.

定理 0.7.3 a は正の実数で $a \neq 1$ とする. r,s>0 である任意の実数 r,s 及び任意の実数 p について,

 $\log_a rs = \log_a r + \log_a s$, $\log_a \frac{r}{s} = \log_a r - \log_a s$, $\log_a r^p = p \log_a r$.

定理 0.7.4 (対数の底の変換公式) 実数 a,b,c について, a,b,c>0 , $a,c\neq 1$ のとき,

$$\log_a b = \frac{\log_c b}{\log_c a} \ .$$

定理 0.7.5 実数 a について a>0 , $a\neq 1$ とする. r>0 , s>0 である任意の実数 r と s とについて,

$$r = s \iff \log_a r = \log_a s$$
.

定理0.7.6 実数 a について a>0 , $a\neq 1$ とする.

- (1) a>1 のとき、任意の実数 r と s とについて、
 - $0 < r < s \iff \log_a r < \log_a s$,
- $0 < r \le s \iff \log_a r \le \log_a s$;
- (2) 0 < a < 1 のとき、任意の実数 r と s とについて、
 - $0 < r < s \iff \log_a r > \log_a s ,$
- $0 < r \le s \iff \log_a r \ge \log_a s \ .$

底が 10 の対数を常用対数という。 工学では,正の実数 r の常用対数 $\log_{10} r$ を $\log r$ と略記することが多い.