微分積分の基本定理 実数 a,b について $a \le b$ とする. 関数 F は区間 [a,b] において微分可能であり, F の導関数 F' は a から b まで定積分可能であるとする. xy 座標平面において関 数 y = F(x) のグラフを考える. 正の自然数 n に対して

 $a = x_0 \le \xi_1 \le x_1 \le \xi_2 \le x_2 \le \xi_3 \le x_3 \le \dots \le x_{n-1} \le \xi_n \le x_n = b$ である実数 $x_0, x_1, x_2, x_3, \dots, x_{n-1}, x_n$ 及び $\xi_1, \xi_2, \xi_3, \dots, \xi_n$ をとる. $n \to \infty$ の とき $\delta_n = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}$ は 0 に収束するとする.

例として n=3 とする. y = F(x) のグラフにおいて,点

 $(\xi_1, F(\xi_1))$ における接線の点の

x座標の範囲を区間 $[x_0,x_1]$ に L_3

制限した線分と、点 $(\xi_2, F(\xi_2))$ y = F(x)

における接線の点の x 座標の範

囲を区間 $[x_1,x_2]$ に制限した線 |(a,F(a))分と,点 $(\xi_3, F(\xi_3))$ における 接線の点の x 座標の範囲を区間 0 x_0 ξ_1 ξ_2 x_2 ξ_3 $[x_2,x_3]$ に制限した線分とを考 える. 更にこれらの線分を上下 a $y \wedge$ に平行移動させて, 一つに繋げ

た折れ線 L_3 を考える. L_3 の 左端の点は (a,F(a)) にする. L_5 このような接線に平行な y = F(x)線分を一つに繋げた折れ線で y = F(x) のグラフを近似する.

自然数 $k=1,2,3,\ldots,n$ に (a,F(a))対して, y = F(x) のグラフの 点 $(\xi_k, F(\xi_k))$ における接線に $x_0 \ \xi_1 \ x_1 \ \xi_2 \ x_2 \ \xi_3 \ x_3 \ \xi_4 \ x_4 \ \xi_5 \ x_5 \ x$ おいて要素の点の x 座標の範囲 $y \wedge$ を区間 $[x_{k-1},x_k]$ に制限した線 分を考える; 更にこれらの線 分を上下に平行移動させて,一 つに繋げた折れ線 L_n を作る. L_{10} y = F(x) L_n の左端の点は (a,F(a)) に する. n=5 のときの折れ線 L_5 は (a, F(a))例えば右上の図のようになる. n=10 のときの折れ線 L_{10} は 0 x_0 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x$

例えば右の図のようになる. 更 に n=50 のときの折れ線 L_{50} $y \wedge$ は例えば右図のようになる. このように,自然数を表す 変数 n の値を限りなく大き くしていくと折れ線 L_n は L_{50} y = F(x)y = F(x) のグラフに限りなく 近づく. y = F(x) のグラフの点 (a,F(a)) $(\xi_k, F(\xi_k))$ における接線の傾 0 きは $F'(\xi_k)$ である. 折れ線 L_n を構成する線分のうち点の L_n ($x_{k-1} \le x \le x_k$) x座標の範囲が区間 $[x_{k-1},x_k]$ $F'(\xi_k)(x_k - x_{k-1})$ である線分は,この接線と平 行なので、傾きが $F'(\xi_k)$ で 傾き $F'(\xi_k)$

 $x_k - x_{k-1}$

傾き $F'(\xi_k)$

 $(\xi_k, F(\xi_k))$

ある. L_n の点について, x

座標が x_{k-1} から x_k に増 加するとき,x座標の増分は

 $x_k - x_{k-1}$ なので、y座標の増

分は $F'(\xi_k)(x_k-x_{k-1})$ であり, y座標は $F'(\xi_k)(x_k-x_{k-1})$ 増

加する.

加すると,y座標は

の点は $(b,F(a)+S_n)$ である. $n \to \infty$ のとき,折れ線 L_n は y = F(x) のグラフに限りなく

近づくので、 L_n の右端の点

なので、 $\lim_{n\to\infty} S_n = \int_a^b F'(x) dx$. 故に

| 例 関数 F を $F(x) = \frac{1}{3}x^3$ とおくと,

関数 F を $F(x) = \frac{2^x}{\ln 2}$ とおくと,

ある. $\frac{d}{dx}\sin x = \cos x \text{ なので,}$

せよ.

問題 6.3.3

微分積分の基本定理より,

微分積分の基本定理より.

なので

する.

算できる.

 $F'(\xi_1)(x_1-x_0)+F'(\xi_2)(x_2-x_1)+F'(\xi_3)(x_3-x_2)+\cdots+F'(\xi_n)(x_n-x_{n-1})$ $= \sum_{k=1}^{n} \{ F'(\xi_k) (x_k - x_{k-1}) \}$ 増加する. この y 座標の増加量を S_n とおく: $S_n = \sum\limits_{k=1}^n \{F'(\xi_k)(x_k - x_{k-1})\}$. 折れ線 L_n に属す点の x $(b,F(a)+S_n)$ 座標が a から b に増加する と,y座標は S_n だけ増加す る. 折れ線 L_n の左端の点が (a,F(a)) なので、 L_n の右端

y = F(x)

x 座標が x_0 から x_1 に増加すると y 座標は $F'(\xi_1)(x_1-x_0)$ 増加し, x座標が x_1 から x_2 に増加すると y座標は $F'(\xi_2)(x_2-x_1)$ 増加し, x座標が x_2 から x_3 に増加すると y座標は $F'(\xi_3)(x_3-x_2)$ 増加し、

x 座標が x_{n-1} から x_n に増加すると y 座標は $F'(\xi_n)(x_n-x_{n-1})$ 増加する. これらを合計する. 折れ線 L_n の点について, x 座標が $x_0=a$ から $x_n=b$ に増

$$(b,F(a)+S_n)$$
 は $y=F(x)$ の 0 a b x グラフの点 $(b,F(b))$ に限りなく近づく、よって
$$\lim_{n\to\infty} \{F(a)+S_n\} = F(b) \ .$$
 $F(a)$ は定数なので $\lim_{n\to\infty} \{F(a)+S_n\} = F(a) + \lim_{n\to\infty} S_n$, よって $F(a) + \lim_{n\to\infty} S_n = F(b)$

 $\lim_{n\to\infty} S_n = F(b) - F(a) .$

 $\int_a^b F'(x) dx = F(b) - F(a) .$

このように考えると、次の微分積分の基本定理 6) が導かれる. 微分積分の基本定理 は、その名前のとおり、微分積分の最も基本となる定理である. その証明は後に

 $S_n = \sum_{k=1}^n \{F'(\xi_k)(x_k - x_{k-1})\}$ は F の導関数 F' のリーマン和であり、

(a, F(a))

定理(微分積分の基本定理) 関数 f は実数 a から実数 b まで積分可能であるとす る. a,b が属すある区間において、関数 F が微分可能で F'(x)=f(x) ならば、 $\int_{a}^{b} f(x) dx = F(b) - F(a) .$

定積分はリーマン和の極限値であるが、リーマン和の極限値を計算するのは困難な 事が多い. しかし, 微分積分の基本定理を用いるとしばしば定積分を比較的簡単に計

 $\frac{d}{dx}F(x) = \frac{d}{dx}\left(\frac{1}{3}x^3\right) = \frac{1}{3}\cdot 3x^2 = x^2 ;$

 $\int_{2}^{5} x^{2} dx = F(5) - F(2) = \frac{1}{3} \cdot 5^{3} - \frac{1}{3} \cdot 2^{3} = \frac{125 - 8}{3} = \frac{117}{3} = 39.$

 $\frac{d}{dx}F(x) = \frac{d}{dx}\frac{2^x}{\ln 2} = \frac{2^x \ln 2}{\ln 2} = 2^x ;$

 $\int_3^8 2^x dx = F(8) - F(3) = \frac{2^8}{\ln 2} - \frac{2^3}{\ln 2} = \frac{256 - 8}{\ln 2} = \frac{248}{\ln 2} \ .$

余弦関数 $\cos x$ は,区間 $\left[0,\frac{\pi}{2}\right]$ において連続なので,0 から $\frac{\pi}{2}$ まで積分可能で

 $\int_0^{\frac{\pi}{2}} \cos x \, dx = \sin \frac{\pi}{2} - \sin 0 = 1 - 0 = 1 \ .$

関数 $\frac{1}{\sqrt{1-x^2}}$ は,区間 $\left[\frac{1}{2},\frac{\sqrt{3}}{2}\right]$ において連続なので, $\frac{1}{2}$ から $\frac{\sqrt{3}}{2}$ まで積分可

 $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} \frac{\sqrt{3}}{2} - \sin^{-1} \frac{1}{2} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} .$

微分公式 $\frac{d}{dx}\ln|x|=\frac{1}{x}$ ($x\neq 0$) を用いて、定積分 $\int_{1}^{e}\frac{1}{x}dx$ を計算

微分公式 $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$ を用いて、定積分 $\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx$ を計算

 $\frac{d}{dx}(-\cos x) = \sin x$ であることを用いて、定積分 $\int_{\frac{\pi}{2}}^{\pi} \sin x \, dx$ を計算

| 例題 微分公式 $\frac{d}{dx}\sin x = \cos x$ を用いて、定積分 $\int_0^{\frac{\pi}{2}}\cos x dx$ を計算する.

終

終

終

終

1 でない正の実数
$$a$$
 を底とする指数関数 a^x の微分公式は
$$\frac{d}{dx}a^x = a^x \ln a \; .$$

[例題] 微分公式 $\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$ (-1 < x < 1) を用いて、定積分 $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-x^2}} dx$ を計算する.

能である. $\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} (-1 < x < 1) なので、$

る. この意味で、積分は微分の逆の操作である.

らば,次のような実数rがある:

正の各自然数 n に対して,

これより

せよ. 関数 F は実数 a が属す区間 I において微分可能とする. 更に, I の各実数 x に 対して,F の導関数 F' は a から x まで積分可能であるとする. 微分積分の基本 定理より $\int_a^x F'(t) dt = F(x) - F(a)$ なので,

 $F(x) = \int_a^x F'(t) dt + F(a) .$

つまり、関数 F の導関数 F' を定積分すると、元の関数 F の値を求めることができ

微分積分の基本定理の主要部を証明する. 5.2節で述べた平均値の定理を用いる. 実数 p と q とについて p < q で、関数 F が区間 [p,q] において微分可能であるな

 $F(q) - F(p) = F'(r)(q - p) \quad \forall r < q.$

実数 a と b とについて a < b のときを考える. 関数 f が実数 a から実数 bまで定積分可能であるとする. 更に,区間 [a,b] において関数 F は微分可能で

F'(x) = f(x) と仮定する. 等式 $\int_a^b f(x) dx = F(b) - F(a)$ を導く.

 $a = x_0 < x_1 < x_2 < x_3 < \dots < x_{n-1} < x_n = b$ である実数 $x_0,x_1,x_2,x_3,\ldots,x_{n-1},x_n$ をとり、 δ_n を次のように定める: $\delta_n = \max\{x_1 - x_0, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}\}.$ $\lim_{n\to\infty}\delta_n=0$ とする. 自然数 $k=1,2,3,\ldots,n$ に対して, $x_{k-1}< x_k$ で, f は区間

 $F(x_k) - F(x_{k-1}) = F'(\xi_k)(x_k - x_{k-1})$ $\forall x_{k-1} < \xi_k < x_k$.

 $F(x_k) - F(x_{k-1}) = f(\xi_k)(x_k - x_{k-1}) .$

 $\sum_{k=1}^{n} \{ F(x_k) - F(x_{k-1}) \} = \sum_{k=1}^{n} \{ f(\xi_k) (x_k - x_{k-1}) \} .$

 $= F(x_1) - F(x_0) + F(x_2) - F(x_1) + F(x_3) - F(x_2) + F(x_4) - F(x_3) + \cdots$ $+F(x_{n-2})-F(x_{n-3})+F(x_{n-1})-F(x_{n-2})+F(x_n)-F(x_{n-1})$

 $[x_{k-1},x_k]$ で微分可能なので、平均値の定理より次のような実数 ξ_k がある:

実数 ξ_k は区間 [a,b] に属すので、仮定より $F'(\xi_k) = f(\xi_k)$ 、よって

 $S_n = \sum_{k=1}^n \{ f(\xi_k) (x_k - x_{k-1}) \}$ とおく. これは関数 f のリーマン和である. $S_n = \sum_{k=1}^n \{ f(\xi_k) (x_k - x_{k-1}) \} = \sum_{k=1}^n \{ F(x_k) - F(x_{k-1}) \}$

 $= -F(x_0) + F(x_n) = -F(a) + F(b)$

こうして微分積分の基本定理の主要部が証明された.

= F(b) - F(a) .関数 f は a から b まで定積分可能であり、 $\lim_{n\to\infty}\delta_n=0$ なので、f のリーマン和 $S_n = \sum_{k=1}^n \{f(\xi_k)(x_k - x_{k-1})\}$ は $n \to \infty$ のとき f の定積分 $\int_a^b f(x) dx$ に収束する: $\lim_{n \to \infty} S_n = \int_a^b f(x) \, dx \ . \quad$ 故に, $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \{ F(b) - F(a) \} = F(b) - F(a) .$

6) ニュートン・ライプニッツの定理ともいわる. ニュートンは17世紀のイギリスの 物理学者・数学者である. ライプニッツは17世紀ドイツの哲学者・数学者である.