§ 7.1 微分

変数の微分という新しい概念を考える. 独立変数 $^{1)}$ x の微分とは新しい一つの変数 dx のことである. 独立変数 x の微分 dx について $dx \neq 0$ とする. また,独立変数 x 及び微分可能な関数 φ に対して, $\varphi(x)$ の微分 $d\varphi(x)$ を次のように定義する:

$$d\varphi(x) = \varphi'(x) dx .$$

従って、従属変数 y を $y = \varphi(x)$ とおくと、y の微分 dy は次のようになる:

$$dy = d\varphi(x) = \varphi'(x) dx$$
.

独立変数 x 及び微分可能な関数 φ に対して従属変数 y を $y=\varphi(x)$ とおく. このとき, 微分係数 $\frac{dy}{dx}$ は次のようになる:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\varphi(x + \Delta x) - \varphi(x)}{\Delta x} = \varphi'(x) .$$

つまり、 $\frac{dy}{dx}$ は、分数と同じ形をしているが、商 $\frac{\varDelta y}{\varDelta x}$ の極限値であって商ではない。 しかし、変数 x の微分 dx と変数 y の微分 dy とを考えると、微分係数 $\frac{dy}{dx}$ はあたかも dy を dx で割るときの商であるかのように計算できる。このことを述べたのが

定理 独立変数 x 及び微分可能な関数 φ に対して、従属変数 y を $y=\varphi(x)$ とおくとき、関数 f と g 及び微分係数 $\frac{dy}{dx}$ 、変数 x の微分 dx、変数 y の微分 dy について、

$$g(y)\frac{dy}{dx} = f(x) \iff g(y)dy = f(x)dx$$
.

証明 $y = \varphi(x)$ なので,

次の定理である.

$$\frac{dy}{dx} = \varphi'(x)$$
, $dy = d\varphi(x) = \varphi'(x) dx$.

 $g(y)\frac{dy}{dx}=f(x)$ とする. $\frac{dy}{dx}=\varphi'(x)$ なので, $g(y)\varphi'(x)=f(x)$; 両辺に dx を掛けると $g(y)\varphi'(x)dx=f(x)dx$; $\varphi'(x)dx=dy$ なので, g(y)dy=f(x)dx .

逆に g(y)dy=f(x)dx とする。 $dy=\varphi'(x)dx$ なので、 $g(y)\varphi'(x)dx=f(x)dx$; 独立変数 x について $dx\neq 0$ なので、 $g(y)\varphi'(x)=f(x)$; $\varphi'(x)=\frac{dy}{dx}$ なので、 $g(y)\frac{dy}{dx}=f(x)$.

 $^{^{1)}}$ 関数 φ に対して $y=\varphi(x)$ となる変数 x と y とを考えるとき, x を独立変数といい, y を従属変数といった。 独立変数の値は私達が自由に決めることができるが, 独立変数の値を決めると従属変数の値は自動的に決まってしまう.